TensorRT-LLMs/tests/integration/defs/disaggregated/test_disaggregated.py
Zheng Duan cf50ba2980
[TRTLLM-6549][feat] add perf metrics endpoint to openai server and openai disagg server (#6985)
Signed-off-by: zhengd-nv <200704041+zhengd-nv@users.noreply.github.com>
2025-08-26 15:34:44 +08:00

1375 lines
56 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import subprocess
import tempfile
from typing import Callable
import pytest
import yaml
from defs.conftest import (get_sm_version, llm_models_root, skip_arm,
skip_no_hopper)
from defs.trt_test_alternative import check_call, check_output, popen
from tensorrt_llm.logger import logger
def cleanup_output_files():
"""Clean up output files from previous runs."""
for file in ['output.json', 'output_streaming.json']:
try:
os.remove(file)
except FileNotFoundError:
pass
def get_disagg_server_url_from_cfg(config_file: str) -> str:
with open(config_file, 'r') as file:
config = yaml.safe_load(file)
server_host = config.get('hostname', 'localhost')
server_port = config.get('port', 8000)
return f"http://{server_host}:{server_port}"
def get_test_config(test_desc, example_dir, test_root):
"""Get test configuration based on test description."""
test_configs_root = f"{test_root}/test_configs"
config_map = {
"2_ranks_diff_max_tokens":
(2, f"{test_configs_root}/disagg_config_diff_max_tokens.yaml"),
"2_ranks": (2, f"{example_dir}/disagg_config.yaml"),
"2_ranks_trt_backend":
(2, f"{test_configs_root}/disagg_config_trt_backend.yaml"),
"gen_only": (2, f"{test_configs_root}/disagg_config_gen_only.yaml"),
"gen_only_trt_backend":
(2, f"{test_configs_root}/disagg_config_gen_only_trt_backend.yaml"),
"gen_only_bs1":
(4, f"{test_configs_root}/disagg_config_gen_only_bs1.yaml"),
"4_ranks": (4, f"{test_configs_root}/disagg_config_ctxtp2_gentp1.yaml"),
"4_ranks_trt_backend":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp1_trt_backend.yaml"),
"cuda_graph":
(2, f"{test_configs_root}/disagg_config_cuda_graph_padding.yaml"),
"mixed": (2, f"{test_configs_root}/disagg_config_mixed.yaml"),
"overlap": (2, f"{test_configs_root}/disagg_config_overlap.yaml"),
"perf_metrics": (2, f"{test_configs_root}/disagg_config_metrics.yaml"),
"trtllm_sampler":
(2, f"{test_configs_root}/disagg_config_trtllm_sampler.yaml"),
"load_balance":
(4, f"{test_configs_root}/disagg_config_load_balance.yaml"),
"cache_aware_balance":
(4, f"{test_configs_root}/disagg_config_cache_aware_balance.yaml"),
"conditional": (2,
f"{test_configs_root}/disagg_config_conditional.yaml"),
"ngram": (2, f"{test_configs_root}/disagg_config_ngram.yaml"),
"ctxpp2_genpp2":
(4, f"{test_configs_root}/disagg_config_ctxpp2_genpp2.yaml"),
"ctxtp2_genpp2":
(4, f"{test_configs_root}/disagg_config_ctxtp2_genpp2.yaml"),
"ctxpp2_gentp2":
(4, f"{test_configs_root}/disagg_config_ctxpp2_gentp2.yaml"),
"ctxtp2pp2_gentp2pp2":
(8, f"{test_configs_root}/disagg_config_ctxtp2pp2_gentp2pp2.yaml"),
"ctxpp4_genpp4":
(8, f"{test_configs_root}/disagg_config_ctxpp4_genpp4.yaml"),
"deepseek_v3_lite_fp8_mpi":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_mpi.yaml"
),
"deepseek_v3_lite_fp8_ucx":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_ucx.yaml"
),
"deepseek_v3_lite_fp8_nixl":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_nixl.yaml"
),
"deepseek_v3_lite_fp8_tp1":
(2,
f"{test_configs_root}/disagg_config_ctxtp1_gentp1_deepseek_v3_lite.yaml"
),
"deepseek_v3_lite_fp8_tp1_mtp":
(2,
f"{test_configs_root}/disagg_config_ctxtp1_gentp1_deepseek_v3_lite_one_mtp.yaml"
),
"deepseek_v3_lite_fp_8_overlap_dp":
(2,
f"{test_configs_root}/disagg_config_ctxtp1_gentp1_deepseek_v3_lite_overlap_dp.yaml"
),
"deepseek_v3_lite_fp8_attention_dp":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_attention_dp.yaml"
),
"deepseek_v3_lite_fp_8_attention_dp_overlap":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_attention_dp_overlap.yaml"
),
"deepseek_v3_lite_fp8_attention_dp_overlap_cuda_graph":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_attention_dp_overlap_cuda_graph.yaml"
),
"deepseek_v3_lite_fp8_overlap_cuda_graph":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_overlap_cuda_graph.yaml"
),
"deepseek_v3_lite_fp8_attention_dp_one":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_attention_dp_one.yaml"
),
"deepseek_v3_lite_fp8_attention_dp_one_mtp":
(4,
f"{test_configs_root}/disagg_config_ctxtp2_gentp2_deepseek_v3_lite_attention_dp_one_mtp.yaml"
),
"deepseek_v3_lite_fp8_tp1_attention_dp_overlap_one_mtp":
(2,
f"{test_configs_root}/disagg_config_ctxtp1_gentp1_deepseek_v3_lite_one_mtp_attention_dp_overlap.yaml"
),
"deepseek_v3_lite_bf16_cache_aware_balance":
(4,
f"{test_configs_root}/disagg_config_cache_aware_balance_deepseek_v3.yaml"
),
"deepseek_v3_lite_bf16_conditional":
(2, f"{test_configs_root}/disagg_config_conditional_deepseek_v3.yaml"),
"deepseek_v3_lite_fp8_tp1_two_mtp":
(2,
f"{test_configs_root}/disagg_config_ctxtp1_gentp1_deepseek_v3_lite_two_mtp.yaml"
),
}
if test_desc not in config_map:
raise ValueError(f"Invalid test description: {test_desc}, "
f"valid descriptions are: {config_map.keys()}")
return config_map[test_desc]
def run_disaggregated_test(example_dir,
test_desc,
num_iters=5,
env=None,
cwd=None,
prompt_file="prompts.json",
extra_endpoints_test: Callable[[str], None] = None):
"""Run disaggregated test with given configuration."""
cleanup_output_files()
run_env = env.copy()
run_env["UCX_TLS"] = "^ib"
num_ranks, config_file = get_test_config(test_desc, example_dir,
os.path.dirname(__file__))
workers_cmd = [
'mpirun', '--allow-run-as-root', '--oversubscribe', '-n',
str(num_ranks), 'trtllm-serve', 'disaggregated_mpi_worker', '-c',
config_file
]
server_start_timeout = 900
server_cmd = [
'trtllm-serve', 'disaggregated', '--server_start_timeout',
str(server_start_timeout), '-c', config_file
]
server_url = get_disagg_server_url_from_cfg(config_file)
try:
with ( # Start workers
open('output_workers.log', 'w') as output_workers,
popen(workers_cmd,
stdout=output_workers,
stderr=subprocess.STDOUT,
env=run_env,
cwd=cwd) as workers_proc,
# Start server
open('output_disagg.log', 'w') as output_disagg,
popen(server_cmd,
stdout=output_disagg,
stderr=subprocess.STDOUT,
env=run_env,
cwd=cwd) as server_proc):
client_dir = f"{example_dir}/clients"
for _ in range(num_iters):
client_cmd = [
'python3', f'{client_dir}/disagg_client.py', '-c',
f'{example_dir}/disagg_config.yaml', '-p',
f'{client_dir}/{prompt_file}', '--ignore-eos',
'--server-start-timeout',
str(server_start_timeout)
]
if prompt_file == "long_prompts.json":
# Use max_tokens 4 for long prompts to reduce test time
client_cmd.extend(['--max-tokens', '4'])
check_call(client_cmd,
env=env,
poll_procs=[workers_proc, server_proc])
# Streaming client run
streaming_client_cmd = client_cmd + [
'--streaming', '-o', 'output_streaming.json'
]
check_call(streaming_client_cmd,
env=env,
poll_procs=[workers_proc, server_proc])
# Run the chat completion endpoint test only for TinyLlama
if test_desc == "overlap" or test_desc == "trtllm_sampler":
chat_client_cmd = client_cmd + [
'-e', 'chat', '-o', 'output_chat.json'
]
check_call(chat_client_cmd,
env=env,
poll_procs=[workers_proc, server_proc])
streaming_chat_client_cmd = chat_client_cmd + [
'--streaming', '-o', 'output_streaming_chat.json'
]
check_call(streaming_chat_client_cmd,
env=env,
poll_procs=[workers_proc, server_proc])
# Skip output verification for long prompts test
if prompt_file == "long_prompts.json":
continue
if extra_endpoints_test is not None:
extra_endpoints_test(server_url)
# Verify outputs
not_expected_strings = ["Berlin Berlin"]
output_files = ['output.json', 'output_streaming.json']
if test_desc == "overlap" or test_desc == "trtllm_sampler":
# Disable streaming chat completion for overlap test
# due to bug
output_files.extend(['output_chat.json'])
if test_desc.startswith("gen_only"):
continue
for output_file in output_files:
with open(output_file, 'r') as f:
content = f.read()
if "deepseek_v3_lite" in test_desc or output_file == "output_chat.json":
expected_strings = [
"Berlin", ["Asyncio is a", "Asyncio module in"]
]
else:
expected_strings = [
"The capital of Germany is Berlin",
"Asyncio is a Python library"
]
for expected_string in expected_strings:
if isinstance(expected_string, list):
# At least one of the strings in the list should be found in the content
assert any(
string in content
for string in expected_string
), f"None of the strings in {expected_string} found in {output_file}"
else:
assert expected_string in content, f"Expected string '{expected_string}' not found in {output_file}"
for not_expected_string in not_expected_strings:
assert not_expected_string not in content, f"Unexpected string '{not_expected_string}' found in {output_file}"
except Exception:
# Print outputs on error
logger.error("-------- Workers output --------")
with open('output_workers.log', 'r') as f:
logger.error(f.read())
logger.error("-------- Disagg server output --------")
with open('output_disagg.log', 'r') as f:
logger.error(f.read())
raise
finally:
server_proc.terminate()
workers_proc.terminate()
server_proc.wait()
workers_proc.wait()
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_diff_max_tokens(disaggregated_test_root,
disaggregated_example_root, llm_venv,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"2_ranks_diff_max_tokens",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory(),
prompt_file="long_prompts.json")
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_single_gpu_with_mpirun(disaggregated_test_root,
disaggregated_example_root,
llm_venv, llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"2_ranks",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_single_gpu_with_mpirun_trt_backend(
disaggregated_test_root, disaggregated_example_root, llm_venv,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"2_ranks_trt_backend",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_benchmark_gen_only(disaggregated_test_root,
disaggregated_example_root, llm_venv,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env['TRTLLM_DISAGG_BENCHMARK_GEN_ONLY'] = '1'
run_disaggregated_test(disaggregated_example_root,
"gen_only",
env=env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_benchmark_gen_only_trt_backend(
disaggregated_test_root, disaggregated_example_root, llm_venv,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env['TRTLLM_DISAGG_BENCHMARK_GEN_ONLY'] = '1'
run_disaggregated_test(disaggregated_example_root,
"gen_only_trt_backend",
env=env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_genbs1(disaggregated_test_root,
disaggregated_example_root, llm_venv,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env['TRTLLM_DISAGG_BENCHMARK_GEN_ONLY'] = '1'
run_disaggregated_test(disaggregated_example_root,
"gen_only_bs1",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(2)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_multi_gpu_with_mpirun(disaggregated_test_root,
disaggregated_example_root,
llm_venv, llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"4_ranks",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(2)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_multi_gpu_with_mpirun_trt_backend(
disaggregated_test_root, disaggregated_example_root, llm_venv,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"4_ranks_trt_backend",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_cuda_graph(disaggregated_test_root, llm_venv,
disaggregated_example_root, llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"cuda_graph",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_mixed(disaggregated_test_root, llm_venv,
disaggregated_example_root, llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"mixed",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_overlap(disaggregated_test_root, llm_venv,
disaggregated_example_root, llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"overlap",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_perf_metrics(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
def extra_endpoints_test(server_url: str):
import json
import urllib.request
with urllib.request.urlopen(f"{server_url}/perf_metrics",
timeout=10) as resp:
assert resp.status == 200
perf_metrics = json.load(resp)
assert len(perf_metrics) > 0
item = perf_metrics[0]
assert "ctx_server" in item
assert "gen_server" in item
assert "ctx_perf_metrics" in item
assert "gen_perf_metrics" in item
assert item["ctx_perf_metrics"]["ctx_request_id"] == item[
"gen_perf_metrics"]["ctx_request_id"]
ctx_metrics = item["ctx_perf_metrics"]["perf_metrics"]["timing_metrics"]
gen_metrics = item["gen_perf_metrics"]["perf_metrics"]["timing_metrics"]
# only one token is generated in ctx
assert ctx_metrics["last_token_time"] - ctx_metrics[
"first_token_time"] < 1e-3
assert ctx_metrics["last_token_time"] < gen_metrics["arrival_time"]
assert gen_metrics["kv_cache_size"] > 0
assert gen_metrics["arrival_time"] < gen_metrics[
"kv_cache_transfer_start"]
assert gen_metrics["kv_cache_transfer_start"] < gen_metrics[
"kv_cache_transfer_end"]
assert gen_metrics["kv_cache_transfer_end"] < gen_metrics[
"first_scheduled_time"]
run_disaggregated_test(disaggregated_example_root,
"perf_metrics",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory(),
extra_endpoints_test=extra_endpoints_test)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_trtllm_sampler(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"trtllm_sampler",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_load_balance(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"load_balance",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_cache_aware_balance(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"cache_aware_balance",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_conditional(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"conditional",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_ngram(disaggregated_test_root, llm_venv,
disaggregated_example_root, llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"ngram",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_ctxpp2_genpp2(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"ctxpp2_genpp2",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_ctxtp2_genpp2(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"ctxtp2_genpp2",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_ctxpp2_gentp2(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"ctxpp2_gentp2",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(8)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_ctxtp2pp2_gentp2pp2(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"ctxtp2pp2_gentp2pp2",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.mark.skip_less_device(8)
@pytest.mark.parametrize("llama_model_root", ['TinyLlama-1.1B-Chat-v1.0'],
indirect=True)
def test_disaggregated_ctxpp4_genpp4(disaggregated_test_root, llm_venv,
disaggregated_example_root,
llama_model_root):
src_dst_dict = {
llama_model_root:
f"{llm_venv.get_working_directory()}/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"ctxpp4_genpp4",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_mpi(disaggregated_test_root,
disaggregated_example_root,
llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env["TRTLLM_USE_MPI_KVCACHE"] = "1"
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_mpi",
env=env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_tp1_single_gpu(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_tp1",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_tp1_single_gpu_mtp(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_tp1_mtp",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@skip_arm
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_ucx(disaggregated_test_root,
disaggregated_example_root,
llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env["TRTLLM_USE_UCX_KVCACHE"] = "1"
env["UCX_TLS"] = "^ib"
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_ucx",
env=env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@skip_arm
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_nixl(disaggregated_test_root,
disaggregated_example_root,
llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env["TRTLLM_USE_NIXL_KVCACHE"] = "1"
env["UCX_TLS"] = "^ib"
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_nixl",
env=env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@skip_arm
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_ucx_tp1_single_gpu(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
env = llm_venv._new_env.copy()
env["TRTLLM_USE_UCX_KVCACHE"] = "1"
env["UCX_TLS"] = "^ib"
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_tp1",
env=env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_attention_dp(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_attention_dp",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_attention_dp_overlap(
disaggregated_test_root, llm_venv, disaggregated_example_root,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp_8_attention_dp_overlap",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_attention_dp_overlap_cuda_graph(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(
disaggregated_example_root,
"deepseek_v3_lite_fp8_attention_dp_overlap_cuda_graph",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_overlap_cuda_graph(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_overlap_cuda_graph",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_attention_dp_one(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_attention_dp_one",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_attention_dp_one_mtp(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_attention_dp_one_mtp",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.skip_less_device(4)
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_tp1_attention_dp_overlap_one_mtp(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(
disaggregated_example_root,
"deepseek_v3_lite_fp8_tp1_attention_dp_overlap_one_mtp",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-bf16'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_bf16_cache_aware_balance(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/bf16",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_bf16_cache_aware_balance",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-bf16'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_bf16_conditional(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/bf16",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_bf16_conditional",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@skip_no_hopper
@pytest.mark.parametrize("deepseek_v3_model_root", ['DeepSeek-V3-Lite-fp8'],
indirect=True)
def test_disaggregated_deepseek_v3_lite_fp8_tp1_two_mtp(
disaggregated_test_root, disaggregated_example_root, llm_venv,
deepseek_v3_model_root):
src_dst_dict = {
deepseek_v3_model_root:
f"{llm_venv.get_working_directory()}/DeepSeek-V3-Lite/fp8",
}
for src, dst in src_dst_dict.items():
if not os.path.islink(dst):
os.makedirs(os.path.dirname(dst), exist_ok=True)
os.symlink(src, dst, target_is_directory=True)
run_disaggregated_test(disaggregated_example_root,
"deepseek_v3_lite_fp8_tp1_two_mtp",
env=llm_venv._new_env,
cwd=llm_venv.get_working_directory())
@pytest.fixture(scope="module")
def benchmark_root():
llm_root = os.getenv("LLM_ROOT")
return os.path.join(llm_root, "tensorrt_llm", "serve", "scripts")
@pytest.fixture(scope="module")
def shared_gpt_path():
DEFAULT_LLM_MODEL_ROOT = os.path.join("/scratch.trt_llm_data", "llm-models")
LLM_MODELS_ROOT = os.environ.get("LLM_MODELS_ROOT", DEFAULT_LLM_MODEL_ROOT)
return os.path.join(LLM_MODELS_ROOT, "datasets",
"ShareGPT_V3_unfiltered_cleaned_split.json")
@pytest.fixture(scope="function")
def benchmark_model_root(request):
models_root = llm_models_root()
if (request.param == "DeepSeek-V3-Lite-fp8"):
model_path = os.path.join(models_root, "DeepSeek-V3-Lite", "fp8")
elif (request.param == "DeepSeek-V3-Lite-bf16"):
model_path = os.path.join(models_root, "DeepSeek-V3-Lite", "bf16")
elif request.param == "llama-v3-8b-hf":
model_path = os.path.join(models_root, "llama-models-v3", "8B")
elif request.param == "llama-3.1-8b-instruct-hf-fp8":
model_path = os.path.join(models_root, "llama-3.1-model",
"Llama-3.1-8B-Instruct-FP8")
else:
raise ValueError(f"Failed to find the model: {request.param}")
return model_path
def run_disaggregated_benchmark(example_dir,
config_file,
benchmark_root,
benchmark_model_root,
shared_gpt_path,
env=None,
cwd=None):
"""Run disaggregated test with given configuration."""
run_env = env.copy()
run_env["UCX_TLS"] = "^ib"
num_rank = 2
workers_cmd = [
'mpirun', '--allow-run-as-root', '--oversubscribe', '-n',
str(num_rank), 'trtllm-serve', 'disaggregated_mpi_worker', '-c',
config_file
]
server_start_timeout = 900
server_cmd = [
'trtllm-serve', 'disaggregated', '--server_start_timeout',
str(server_start_timeout), '-c', config_file
]
try:
with ( # Start workers
open('output_workers.log', 'w') as output_workers,
popen(workers_cmd,
stdout=output_workers,
stderr=subprocess.STDOUT,
env=run_env,
cwd=cwd) as workers_proc,
# Start server
open('output_disagg.log', 'w') as output_disagg,
popen(server_cmd,
stdout=output_disagg,
stderr=subprocess.STDOUT,
env=run_env,
cwd=cwd) as server_proc):
# Ensure the sever has started
client_dir = f"{example_dir}/clients"
client_cmd = [
'python3', f'{client_dir}/disagg_client.py', '-c',
f'{example_dir}/disagg_config.yaml', '-p',
f'{client_dir}/prompts.json', '--ignore-eos',
'--server-start-timeout',
str(server_start_timeout)
]
# Warm up
check_call(client_cmd,
env=env,
poll_procs=[workers_proc, server_proc])
# Start Benchmark
benchmark_script = os.path.join(benchmark_root,
"benchmark_serving.py")
benchmark_cmd = [
'python3',
benchmark_script,
'--model',
benchmark_model_root,
'--tokenizer',
benchmark_model_root,
'--dataset-name',
'random',
'--dataset-path',
shared_gpt_path,
'--random-input-len',
'256',
'--random-output-len',
'64',
'--random-prefix-len',
'0',
'--num-prompts',
'320',
'--max-concurrency',
'32',
'--host',
'localhost',
'--port',
'8000',
'--ignore-eos',
'--no-test-input',
'--percentile-metrics',
'e2el,ttft',
]
# warm up
check_call(benchmark_cmd, env=env)
output = check_output(benchmark_cmd, env=env)
e2el_pattern = r"Median E2EL \(ms\):\s*(\d+\.?\d*)"
ttft_pattern = r"Median TTFT \(ms\):\s*(\d+\.?\d*)"
e2el_match = re.search(e2el_pattern, output)
ttft_match = re.search(ttft_pattern, output)
if e2el_match and ttft_match:
median_e2el = float(e2el_match.group(1))
median_ttft = float(ttft_match.group(1))
return median_e2el, median_ttft
else:
raise ValueError("No benchmark result found")
except Exception:
# Print outputs on error
logger.error("-------- Workers output --------")
with open('output_workers.log', 'r') as f:
logger.error(f.read())
logger.error("-------- Disagg server output --------")
with open('output_disagg.log', 'r') as f:
logger.error(f.read())
raise
finally:
server_proc.terminate()
workers_proc.terminate()
server_proc.wait()
workers_proc.wait()
def get_config_for_benchmark(model_root, backend):
serve_config = {
"model": model_root,
"hostname": "localhost",
"port": 8000,
"backend": "pytorch",
"context_servers": {
"num_instances": 1,
"max_batch_size": 2,
"max_num_tokens": 384,
"max_seq_len": 320,
"tensor_parallel_size": 1,
"pipeline_parallel_size": 1,
"disable_overlap_scheduler": True,
"cache_transceiver_config": {
"backend": backend,
"max_tokens_in_buffer": 512,
},
"urls": ["localhost:8001"]
},
"generation_servers": {
"num_instances": 1,
"tensor_parallel_size": 1,
"pipeline_parallel_size": 1,
"max_batch_size": 2,
"max_num_tokens": 384,
"max_seq_len": 320,
"cache_transceiver_config": {
"backend": backend,
"max_tokens_in_buffer": 512,
},
"urls": ["localhost:8002"]
}
}
return serve_config
@pytest.mark.parametrize("benchmark_model_root", [
'DeepSeek-V3-Lite-fp8', 'DeepSeek-V3-Lite-bf16', 'llama-v3-8b-hf',
'llama-3.1-8b-instruct-hf-fp8'
],
indirect=True)
def test_disaggregated_benchmark_on_diff_backends(
disaggregated_test_root, disaggregated_example_root, llm_venv,
benchmark_model_root, benchmark_root, shared_gpt_path):
if "DeepSeek-V3-Lite" in benchmark_model_root and "fp8" in benchmark_model_root and get_sm_version(
) != 90:
pytest.skip("The test should only run on Hopper")
nixl_config = get_config_for_benchmark(benchmark_model_root, "NIXL")
ucx_config = get_config_for_benchmark(benchmark_model_root, "UCX")
temp_dir = tempfile.TemporaryDirectory()
nixl_config_path = os.path.join(temp_dir.name, "nixl_config.yaml")
ucx_config_path = os.path.join(temp_dir.name, "ucx_config.yaml")
with open(nixl_config_path, 'w', encoding='utf-8') as f:
yaml.dump(nixl_config, f)
with open(ucx_config_path, 'w', encoding='utf-8') as f:
yaml.dump(ucx_config, f)
env = llm_venv._new_env.copy()
nixl_e2el, nixl_ttft = run_disaggregated_benchmark(
disaggregated_example_root,
nixl_config_path,
benchmark_root,
benchmark_model_root,
shared_gpt_path,
env=env,
cwd=llm_venv.get_working_directory())
ucx_e2el, ucx_ttft = run_disaggregated_benchmark(
disaggregated_example_root,
ucx_config_path,
benchmark_root,
benchmark_model_root,
shared_gpt_path,
env=env,
cwd=llm_venv.get_working_directory())
print(f"Nixl E2EL: {nixl_e2el} ms, UCX E2EL: {ucx_e2el} ms")
print(f"Nixl TTFT: {nixl_ttft} ms, UCX TTFT: {ucx_ttft} ms")
assert ucx_e2el > 0 and nixl_e2el > 0 and nixl_e2el < 1.05 * ucx_e2el
assert ucx_ttft > 0 and nixl_ttft > 0 and nixl_ttft < 1.05 * ucx_ttft