TensorRT-LLMs/cpp/tensorrt_llm/thop/reducescatterOp.cpp
Jinyang Yuan b618e1f55b
perf: Eliminate the need for attention DP padding when possible (#3439)
Signed-off-by: Jinyang Yuan <154768711+jinyangyuan-nvidia@users.noreply.github.com>
Co-authored-by: raccoonliukai <raccoonliu@tencent.com>
2025-05-17 13:30:55 +08:00

179 lines
5.4 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/opUtils.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include <NvInferRuntime.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/extension.h>
#if ENABLE_MULTI_DEVICE
#include <nccl.h>
#endif // ENABLE_MULTI_DEVICE
#include <cassert>
#include <set>
#include <vector>
namespace torch_ext
{
#if ENABLE_MULTI_DEVICE
namespace
{
class ReducescatterOp
{
public:
ReducescatterOp(std::set<int> group)
: mGroup(std::move(group))
{
}
~ReducescatterOp() = default;
int initialize() noexcept
{
TLLM_LOG_TRACE("%s start for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank());
mNcclComm = getComm(mGroup);
TLLM_LOG_TRACE("%s stop for rank %d", __PRETTY_FUNCTION__, COMM_SESSION.getRank());
return 0;
}
torch::Tensor run(torch::Tensor const& input, torch::optional<torch::List<int64_t>> sizes) noexcept
{
TLLM_CHECK_WITH_INFO(mNcclComm.get() != nullptr, "mNcclComm should be initialized before used");
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
auto type = tensorrt_llm::runtime::TorchUtils::dataType(input.scalar_type());
std::vector<int64_t> outputShape = input.sizes().vec();
if (sizes.has_value())
{
auto rank = COMM_SESSION.getRank();
int groupRank = 0;
for (auto const& currentRank : mGroup)
{
if (rank == currentRank)
break;
++groupRank;
}
TLLM_CHECK(static_cast<size_t>(groupRank) < mGroup.size());
outputShape[0] = sizes.value()[groupRank];
}
else
{
outputShape[0] = outputShape[0] / mGroup.size();
}
auto output = torch::empty(outputShape, input.options());
if (sizes.has_value())
{
size_t numel_base = std::accumulate(outputShape.cbegin() + 1, outputShape.cend(), 1, std::multiplies<>{});
int64_t split_offset = 0;
ncclGroupStart();
for (int root = 0; root < static_cast<int>(mGroup.size()); ++root)
{
auto split_size = sizes.value()[root];
NCCLCHECK(
ncclReduce(input.index({torch::indexing::Slice(split_offset, torch::indexing::None)}).data_ptr(),
output.mutable_data_ptr(), numel_base * split_size, (*getDtypeMap())[type], ncclSum, root,
*mNcclComm, stream));
split_offset += split_size;
}
ncclGroupEnd();
}
else
{
NCCLCHECK(ncclReduceScatter(input.data_ptr(), output.mutable_data_ptr(), output.numel(),
(*getDtypeMap())[type], ncclSum, *mNcclComm, stream));
}
return output;
}
std::vector<torch::Tensor> run_list(
torch::TensorList input_list, torch::optional<torch::List<int64_t>> sizes) noexcept
{
std::vector<torch::Tensor> output_list;
output_list.reserve(input_list.size());
ncclGroupStart();
for (auto const& input : input_list)
{
auto output = run(input, sizes);
output_list.push_back(output);
}
ncclGroupEnd();
return output_list;
}
private:
std::set<int> mGroup;
std::shared_ptr<ncclComm_t> mNcclComm;
};
} // namespace
#endif // ENABLE_MULTI_DEVICE
extern torch::Tensor reducescatter(
torch::Tensor input, torch::optional<torch::List<int64_t>> sizes, torch::List<int64_t> group_)
{
#if ENABLE_MULTI_DEVICE
std::set<int> group;
for (int64_t rank : group_)
{
group.insert(static_cast<int>(rank));
}
ReducescatterOp op(group);
op.initialize();
auto output = op.run(input, sizes);
return output;
#else
return input;
#endif // ENABLE_MULTI_DEVICE
}
extern std::vector<torch::Tensor> reducescatter_list(
torch::TensorList input_list, torch::optional<torch::List<int64_t>> sizes, torch::List<int64_t> group_)
{
#if ENABLE_MULTI_DEVICE
std::set<int> group;
for (int64_t rank : group_)
{
group.insert(static_cast<int>(rank));
}
ReducescatterOp op(group);
op.initialize();
auto output_list = op.run_list(input_list, sizes);
return output_list;
#else
return input_list.vec();
#endif // ENABLE_MULTI_DEVICE
}
} // namespace torch_ext
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def("reducescatter(Tensor input, int[]? sizes, int[] group) -> Tensor");
m.def("reducescatter_list(Tensor[] input_list, int[]? sizes, int[] group) -> Tensor[]");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("reducescatter", &torch_ext::reducescatter);
m.impl("reducescatter_list", &torch_ext::reducescatter_list);
}