TensorRT-LLMs/examples/vit/convert_checkpoint.py
Kaiyu Xie 2631f21089
Update (#2978)
Signed-off-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2025-03-23 16:39:35 +08:00

148 lines
4.7 KiB
Python

import argparse
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
import tensorrt_llm
from tensorrt_llm._utils import release_gc
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import LlavaNextVisionWrapper
from tensorrt_llm.models.modeling_utils import QuantConfig
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True, default=None)
parser.add_argument(
'--vision_tp_size',
type=int,
default=1,
help='N-way tensor parallelism size for the vision tower')
parser.add_argument(
'--vision_cp_size',
type=int,
default=1,
help='N-way context parallelism size for the vision tower')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--load_by_shard',
action='store_true',
help='Load a pretrained model shard-by-shard.')
parser.add_argument("--load_model_on_cpu", action="store_true")
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
parser.add_argument(
'--save_config_only',
action="store_true",
default=False,
help=
'Only save the model config w/o read and converting weights, be careful, this is for debug only'
)
parser.add_argument('--log_level', type=str, default='info')
args = parser.parse_args()
return args
def args_to_build_options(args):
return {
'load_model_on_cpu': args.load_model_on_cpu,
}
def convert_and_save_hf(args):
model_dir = args.model_dir
load_by_shard = args.load_by_shard
world_size = args.vision_tp_size * args.vision_cp_size
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
# before the refactor is done.
override_fields = {}
override_fields.update(args_to_build_options(args))
quant_config = QuantConfig()
# When not loading by shard, preload one complete model and then slice per rank weights from this
# this saves the disk reloading time
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.vision_tp_size,
cp_size=args.vision_cp_size)
tik = time.time()
llava_next_vision_wrapper = LlavaNextVisionWrapper.from_hugging_face(
model_dir,
args.dtype,
mapping=mapping,
quant_config=quant_config,
load_by_shard=load_by_shard,
**override_fields,
)
print(f'Total time of reading and converting {time.time()-tik} s')
tik = time.time()
llava_next_vision_wrapper.save_checkpoint(args.output_dir,
save_config=(rank == 0))
del llava_next_vision_wrapper
print(f'Total time of saving checkpoint {time.time()-tik} s')
execute(args.workers, [convert_and_save_rank] * world_size, args)
release_gc()
def execute(workers, func, args):
if workers == 1:
for rank, f in enumerate(func):
f(args, rank)
else:
with ThreadPoolExecutor(max_workers=workers) as p:
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
convert_and_save_hf(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()