TensorRT-LLMs/_modules/tensorrt_llm/runtime/model_runner.html
2025-11-25 03:40:39 +00:00

1649 lines
184 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.runtime.model_runner &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/runtime/model_runner';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc4';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc4" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.runtime.model_runner</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.runtime.model_runner</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">copy</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">json</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">pathlib</span><span class="w"> </span><span class="kn">import</span> <span class="n">Path</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">tensorrt</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">trt</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..</span><span class="w"> </span><span class="kn">import</span> <span class="n">profiler</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">mpi_comm</span><span class="p">,</span> <span class="n">mpi_world_size</span><span class="p">,</span> <span class="n">numpy_to_torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..bindings</span><span class="w"> </span><span class="kn">import</span> <span class="n">MpiComm</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">Executor</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..builder</span><span class="w"> </span><span class="kn">import</span> <span class="n">Engine</span><span class="p">,</span> <span class="n">EngineConfig</span><span class="p">,</span> <span class="n">get_engine_version</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..llmapi.kv_cache_type</span><span class="w"> </span><span class="kn">import</span> <span class="n">KVCacheType</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..logger</span><span class="w"> </span><span class="kn">import</span> <span class="n">logger</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..quantization</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantMode</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.generation</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">DISABLE_TORCH_DEVICE_SET</span><span class="p">,</span> <span class="n">ChatGLMGenerationSession</span><span class="p">,</span>
<span class="n">GenerationSession</span><span class="p">,</span> <span class="n">LogitsProcessor</span><span class="p">,</span> <span class="n">LoraManager</span><span class="p">,</span>
<span class="n">ModelConfig</span><span class="p">,</span> <span class="n">QWenForCausalLMGenerationSession</span><span class="p">,</span>
<span class="n">SamplingConfig</span><span class="p">,</span> <span class="n">StoppingCriteria</span><span class="p">,</span> <span class="n">to_word_list_format</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">get_engine_name</span><span class="p">(</span><span class="n">model</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">pp_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Get the serialized engine file name.</span>
<span class="sd"> Args:</span>
<span class="sd"> model (str):</span>
<span class="sd"> Model name, e.g., bloom, gpt.</span>
<span class="sd"> dtype (str):</span>
<span class="sd"> Data type, e.g., float32, float16, bfloat16,</span>
<span class="sd"> tp_size (int):</span>
<span class="sd"> The size of tensor parallel.</span>
<span class="sd"> pp_size (int):</span>
<span class="sd"> The size of pipeline parallel.</span>
<span class="sd"> rank (int):</span>
<span class="sd"> The rank id.</span>
<span class="sd"> Returns:</span>
<span class="sd"> str: The serialized engine file name.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">pp_size</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="s1">&#39;</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_tp</span><span class="si">{}</span><span class="s1">_rank</span><span class="si">{}</span><span class="s1">.engine&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span> <span class="n">rank</span><span class="p">)</span>
<span class="k">return</span> <span class="s1">&#39;</span><span class="si">{}</span><span class="s1">_</span><span class="si">{}</span><span class="s1">_tp</span><span class="si">{}</span><span class="s1">_pp</span><span class="si">{}</span><span class="s1">_rank</span><span class="si">{}</span><span class="s1">.engine&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">model</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span>
<span class="n">pp_size</span><span class="p">,</span> <span class="n">rank</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">read_config</span><span class="p">(</span><span class="n">config_path</span><span class="p">:</span> <span class="n">Path</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">ModelConfig</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Read the engine config file and create a ModelConfig instance, return the ModelConfig instance</span>
<span class="sd"> and other config fields in a dict.</span>
<span class="sd"> Args:</span>
<span class="sd"> config_path (Path):</span>
<span class="sd"> The path of engine config file.</span>
<span class="sd"> Returns:</span>
<span class="sd"> Tuple[ModelConfig, dict]: A ModelConfig instance and other config fields.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">config_path</span><span class="p">,</span> <span class="s1">&#39;r&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">config</span> <span class="o">=</span> <span class="n">json</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">return</span> <span class="n">_builder_to_model_config</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_builder_to_model_config</span><span class="p">(</span><span class="n">config</span><span class="p">:</span> <span class="nb">dict</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">ModelConfig</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]:</span>
<span class="n">builder_config</span> <span class="o">=</span> <span class="n">config</span><span class="p">[</span><span class="s1">&#39;builder_config&#39;</span><span class="p">]</span>
<span class="n">model_name</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;name&#39;</span><span class="p">]</span>
<span class="n">dtype</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;precision&#39;</span><span class="p">]</span>
<span class="n">tp_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;tensor_parallel&#39;</span><span class="p">]</span>
<span class="n">pp_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;pipeline_parallel&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;kv_cache_type&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">kv_cache_type</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">KVCacheType</span><span class="p">(</span><span class="n">kv_cache_type</span><span class="p">)</span>
<span class="n">world_size</span> <span class="o">=</span> <span class="n">tp_size</span> <span class="o">*</span> <span class="n">pp_size</span>
<span class="k">assert</span> <span class="n">world_size</span> <span class="o">==</span> <span class="n">mpi_world_size</span><span class="p">(),</span> \
<span class="sa">f</span><span class="s1">&#39;Engine world size (</span><span class="si">{</span><span class="n">tp_size</span><span class="si">}</span><span class="s1"> * </span><span class="si">{</span><span class="n">pp_size</span><span class="si">}</span><span class="s1">) != Runtime world size (</span><span class="si">{</span><span class="n">mpi_world_size</span><span class="p">()</span><span class="si">}</span><span class="s1">)&#39;</span>
<span class="n">num_heads</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;num_heads&#39;</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">num_heads</span> <span class="o">%</span> <span class="n">tp_size</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> \
<span class="sa">f</span><span class="s2">&quot;The number of heads (</span><span class="si">{</span><span class="n">num_heads</span><span class="si">}</span><span class="s2">) is not a multiple of tp_size (</span><span class="si">{</span><span class="n">tp_size</span><span class="si">}</span><span class="s2">)&quot;</span>
<span class="n">num_kv_heads</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;num_kv_heads&#39;</span><span class="p">,</span> <span class="n">num_heads</span><span class="p">)</span>
<span class="c1"># TODO: multi_query_mode should be removed</span>
<span class="n">multi_query_mode</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;multi_query_mode&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="k">if</span> <span class="n">multi_query_mode</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="s2">&quot;`multi_query_mode` config is deprecated. Please rebuild the engine.&quot;</span>
<span class="p">)</span>
<span class="c1"># num_kv_heads, if exists in config, should override multi_query_mode</span>
<span class="k">if</span> <span class="n">multi_query_mode</span> <span class="ow">and</span> <span class="p">(</span><span class="s1">&#39;num_kv_heads&#39;</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">builder_config</span><span class="p">):</span>
<span class="n">num_kv_heads</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">num_heads</span> <span class="o">=</span> <span class="n">num_heads</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="n">num_kv_heads</span> <span class="o">=</span> <span class="p">(</span><span class="n">num_kv_heads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="n">head_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;head_size&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">hidden_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;hidden_size&#39;</span><span class="p">]</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="n">vocab_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;vocab_size&#39;</span><span class="p">]</span>
<span class="n">num_layers</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;num_layers&#39;</span><span class="p">]</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;max_batch_size&#39;</span><span class="p">]</span>
<span class="n">max_beam_width</span> <span class="o">=</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;max_beam_width&#39;</span><span class="p">]</span>
<span class="n">cross_attention</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;cross_attention&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">has_position_embedding</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;has_position_embedding&#39;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="n">has_token_type_embedding</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;has_token_type_embedding&#39;</span><span class="p">,</span>
<span class="kc">False</span><span class="p">)</span>
<span class="n">gather_context_logits</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;gather_context_logits&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">gather_generation_logits</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;gather_generation_logits&#39;</span><span class="p">,</span>
<span class="kc">False</span><span class="p">)</span>
<span class="n">max_prompt_embedding_table_size</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;max_prompt_embedding_table_size&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">quant_mode</span> <span class="o">=</span> <span class="n">QuantMode</span><span class="p">(</span><span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;quant_mode&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>
<span class="n">lora_target_modules</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;lora_target_modules&#39;</span><span class="p">)</span>
<span class="n">lora_trtllm_modules_to_hf_modules</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;trtllm_modules_to_hf_modules&#39;</span><span class="p">)</span>
<span class="n">max_medusa_token_len</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;max_draft_len&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">num_medusa_heads</span> <span class="o">=</span> <span class="n">builder_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;num_medusa_heads&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">skip_cross_attn_blocks</span> <span class="o">=</span> <span class="nb">bool</span><span class="p">(</span><span class="n">config</span><span class="p">[</span><span class="s1">&#39;pretrained_config&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;skip_cross_attn_blocks&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">))</span>
<span class="c1"># ReDrafter</span>
<span class="n">redrafter_num_beams</span> <span class="o">=</span> <span class="n">config</span><span class="p">[</span><span class="s1">&#39;pretrained_config&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;redrafter_num_beams&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">redrafter_draft_len_per_beam</span> <span class="o">=</span> <span class="n">config</span><span class="p">[</span><span class="s1">&#39;pretrained_config&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;redrafter_draft_len_per_beam&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="n">plugin_config</span> <span class="o">=</span> <span class="n">config</span><span class="p">[</span><span class="s1">&#39;plugin_config&#39;</span><span class="p">]</span>
<span class="n">use_gpt_attention_plugin</span> <span class="o">=</span> <span class="nb">bool</span><span class="p">(</span><span class="n">plugin_config</span><span class="p">[</span><span class="s1">&#39;gpt_attention_plugin&#39;</span><span class="p">])</span>
<span class="n">gemm_allreduce_plugin</span> <span class="o">=</span> <span class="n">plugin_config</span><span class="p">[</span><span class="s1">&#39;gemm_allreduce_plugin&#39;</span><span class="p">]</span>
<span class="n">mamba_conv1d_plugin</span> <span class="o">=</span> <span class="nb">bool</span><span class="p">(</span><span class="n">plugin_config</span><span class="p">[</span><span class="s1">&#39;mamba_conv1d_plugin&#39;</span><span class="p">])</span>
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">plugin_config</span><span class="p">[</span><span class="s1">&#39;remove_input_padding&#39;</span><span class="p">]</span>
<span class="n">paged_state</span> <span class="o">=</span> <span class="n">plugin_config</span><span class="p">[</span><span class="s1">&#39;paged_state&#39;</span><span class="p">]</span>
<span class="n">tokens_per_block</span> <span class="o">=</span> <span class="n">plugin_config</span><span class="p">[</span><span class="s1">&#39;tokens_per_block&#39;</span><span class="p">]</span>
<span class="n">lora_plugin</span> <span class="o">=</span> <span class="n">plugin_config</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;lora_plugin&#39;</span><span class="p">)</span>
<span class="n">model_config</span> <span class="o">=</span> <span class="n">ModelConfig</span><span class="p">(</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="n">max_beam_width</span><span class="p">,</span>
<span class="n">vocab_size</span><span class="o">=</span><span class="n">vocab_size</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="n">num_layers</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="n">num_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">head_size</span><span class="o">=</span><span class="n">head_size</span><span class="p">,</span>
<span class="n">gpt_attention_plugin</span><span class="o">=</span><span class="n">use_gpt_attention_plugin</span><span class="p">,</span>
<span class="n">gemm_allreduce_plugin</span><span class="o">=</span><span class="n">gemm_allreduce_plugin</span><span class="p">,</span>
<span class="n">mamba_conv1d_plugin</span><span class="o">=</span><span class="n">mamba_conv1d_plugin</span><span class="p">,</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">model_name</span><span class="o">=</span><span class="n">model_name</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">kv_cache_type</span><span class="p">,</span>
<span class="n">paged_state</span><span class="o">=</span><span class="n">paged_state</span><span class="p">,</span>
<span class="n">cross_attention</span><span class="o">=</span><span class="n">cross_attention</span><span class="p">,</span>
<span class="n">has_position_embedding</span><span class="o">=</span><span class="n">has_position_embedding</span><span class="p">,</span>
<span class="n">has_token_type_embedding</span><span class="o">=</span><span class="n">has_token_type_embedding</span><span class="p">,</span>
<span class="n">tokens_per_block</span><span class="o">=</span><span class="n">tokens_per_block</span><span class="p">,</span>
<span class="n">max_prompt_embedding_table_size</span><span class="o">=</span><span class="n">max_prompt_embedding_table_size</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">gather_context_logits</span><span class="o">=</span><span class="n">gather_context_logits</span><span class="p">,</span>
<span class="n">gather_generation_logits</span><span class="o">=</span><span class="n">gather_generation_logits</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">lora_plugin</span><span class="o">=</span><span class="n">lora_plugin</span><span class="p">,</span>
<span class="n">lora_target_modules</span><span class="o">=</span><span class="n">lora_target_modules</span><span class="p">,</span>
<span class="n">trtllm_modules_to_hf_modules</span><span class="o">=</span><span class="n">lora_trtllm_modules_to_hf_modules</span><span class="p">,</span>
<span class="n">num_medusa_heads</span><span class="o">=</span><span class="n">num_medusa_heads</span><span class="p">,</span>
<span class="n">max_medusa_tokens</span><span class="o">=</span><span class="n">max_medusa_token_len</span><span class="p">,</span>
<span class="n">skip_cross_attn_blocks</span><span class="o">=</span><span class="n">skip_cross_attn_blocks</span><span class="p">,</span>
<span class="c1"># ReDrafter</span>
<span class="n">redrafter_num_beams</span><span class="o">=</span><span class="n">redrafter_num_beams</span><span class="p">,</span>
<span class="n">redrafter_draft_len_per_beam</span><span class="o">=</span><span class="n">redrafter_draft_len_per_beam</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">other_config</span> <span class="o">=</span> <span class="p">{</span>
<span class="s1">&#39;world_size&#39;</span><span class="p">:</span> <span class="n">world_size</span><span class="p">,</span>
<span class="s1">&#39;tp_size&#39;</span><span class="p">:</span> <span class="n">tp_size</span><span class="p">,</span>
<span class="s1">&#39;pp_size&#39;</span><span class="p">:</span> <span class="n">pp_size</span><span class="p">,</span>
<span class="s1">&#39;max_batch_size&#39;</span><span class="p">:</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;max_batch_size&#39;</span><span class="p">],</span>
<span class="s1">&#39;max_input_len&#39;</span><span class="p">:</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;max_input_len&#39;</span><span class="p">],</span>
<span class="s1">&#39;max_output_len&#39;</span><span class="p">:</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;max_output_len&#39;</span><span class="p">],</span>
<span class="s1">&#39;max_beam_width&#39;</span><span class="p">:</span> <span class="n">builder_config</span><span class="p">[</span><span class="s1">&#39;max_beam_width&#39;</span><span class="p">]</span>
<span class="p">}</span>
<span class="k">return</span> <span class="n">model_config</span><span class="p">,</span> <span class="n">other_config</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_engine_config_to_model_config</span><span class="p">(</span><span class="n">engine_config</span><span class="p">:</span> <span class="n">EngineConfig</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">ModelConfig</span><span class="p">:</span>
<span class="n">pretrained_config</span> <span class="o">=</span> <span class="n">engine_config</span><span class="o">.</span><span class="n">pretrained_config</span>
<span class="n">build_config</span> <span class="o">=</span> <span class="n">engine_config</span><span class="o">.</span><span class="n">build_config</span>
<span class="n">tp_size</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="n">num_heads</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_attention_heads</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="n">num_kv_heads</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_key_value_heads</span>
<span class="n">num_kv_heads</span> <span class="o">=</span> <span class="p">(</span><span class="n">num_kv_heads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="n">hidden_size</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="n">head_size</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">head_size</span>
<span class="n">rnn_config_items</span> <span class="o">=</span> <span class="p">[</span>
<span class="s1">&#39;conv_kernel&#39;</span><span class="p">,</span> <span class="s1">&#39;layer_types&#39;</span><span class="p">,</span> <span class="s1">&#39;rnn_hidden_size&#39;</span><span class="p">,</span> <span class="s1">&#39;state_size&#39;</span><span class="p">,</span>
<span class="s1">&#39;state_dtype&#39;</span><span class="p">,</span> <span class="s1">&#39;rnn_head_size&#39;</span><span class="p">,</span> <span class="s1">&#39;rnn_conv_dim_size&#39;</span>
<span class="p">]</span>
<span class="n">rnn_configs_kwargs</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">item</span> <span class="ow">in</span> <span class="n">rnn_config_items</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="n">item</span><span class="p">):</span>
<span class="n">rnn_configs_kwargs</span><span class="p">[</span><span class="n">item</span><span class="p">]</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="n">item</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">build_config</span><span class="p">,</span> <span class="s1">&#39;kv_cache_type&#39;</span><span class="p">):</span>
<span class="n">logger</span><span class="o">.</span><span class="n">Warning</span><span class="p">(</span>
<span class="s1">&#39;Build config doesn</span><span class="se">\&#39;</span><span class="s1">t have kv_cache_type, you might need to rebuild your enigne.&#39;</span>
<span class="p">)</span>
<span class="c1"># TODO(oargov): this is a hack, make it prettier!</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s2">&quot;num_kv_heads_per_layer&quot;</span><span class="p">):</span>
<span class="n">pp_rank</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_rank</span>
<span class="n">pp_size</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_size</span>
<span class="n">layers_per_pp_rank</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">//</span> <span class="n">pp_size</span>
<span class="n">first_local_layer</span> <span class="o">=</span> <span class="n">layers_per_pp_rank</span> <span class="o">*</span> <span class="n">pp_rank</span>
<span class="n">first_layer_next_rank</span> <span class="o">=</span> <span class="n">first_local_layer</span> <span class="o">+</span> <span class="n">layers_per_pp_rank</span>
<span class="n">layer_types</span> <span class="o">=</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s2">&quot;layer_types&quot;</span><span class="p">,</span> <span class="p">[</span><span class="s2">&quot;attention&quot;</span><span class="p">])</span>
<span class="n">num_attn_layers_lower_ranks</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">layer_types</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">%</span> <span class="nb">len</span><span class="p">(</span><span class="n">layer_types</span><span class="p">)]</span>
<span class="k">for</span> <span class="n">layer_idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">first_local_layer</span><span class="p">)</span>
<span class="p">]</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="s2">&quot;attention&quot;</span><span class="p">)</span>
<span class="n">num_local_attn_layers</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">layer_types</span><span class="p">[</span><span class="n">layer_idx</span> <span class="o">%</span> <span class="nb">len</span><span class="p">(</span><span class="n">layer_types</span><span class="p">)]</span>
<span class="k">for</span> <span class="n">layer_idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">first_local_layer</span><span class="p">,</span> <span class="n">first_layer_next_rank</span><span class="p">)</span>
<span class="p">]</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="s2">&quot;attention&quot;</span><span class="p">)</span>
<span class="n">num_kv_heads_per_layer</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_kv_heads_per_layer</span><span class="p">[</span>
<span class="n">num_attn_layers_lower_ranks</span><span class="p">:</span><span class="n">num_attn_layers_lower_ranks</span> <span class="o">+</span>
<span class="n">num_local_attn_layers</span><span class="p">]</span>
<span class="n">num_kv_heads_per_layer</span> <span class="o">=</span> <span class="p">[(</span><span class="n">nheads</span> <span class="o">+</span> <span class="n">tp_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="n">tp_size</span>
<span class="k">for</span> <span class="n">nheads</span> <span class="ow">in</span> <span class="n">num_kv_heads_per_layer</span><span class="p">]</span>
<span class="k">elif</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s2">&quot;get_layer_num_kv_heads&quot;</span><span class="p">):</span>
<span class="c1"># each layer has a different number of kv heads</span>
<span class="n">attention_layers</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">layer_idx</span> <span class="k">for</span> <span class="n">layer_idx</span><span class="p">,</span> <span class="n">layer_type</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span>
<span class="n">pretrained_config</span><span class="o">.</span><span class="n">layer_types</span><span class="p">)</span> <span class="k">if</span> <span class="n">layer_type</span> <span class="o">==</span> <span class="s2">&quot;attention&quot;</span>
<span class="p">]</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s2">&quot;layer_types&quot;</span><span class="p">)</span> <span class="k">else</span> <span class="nb">list</span><span class="p">(</span>
<span class="nb">range</span><span class="p">(</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">))</span>
<span class="n">num_kv_heads_per_layer</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">pretrained_config</span><span class="o">.</span><span class="n">get_layer_num_kv_heads</span><span class="p">(</span><span class="n">layer_idx</span><span class="p">)</span>
<span class="k">if</span> <span class="n">layer_idx</span> <span class="ow">in</span> <span class="n">attention_layers</span> <span class="k">else</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">layer_idx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">)</span>
<span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">num_kv_heads_per_layer</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s2">&quot;num_kv_heads_per_cross_attn_layer&quot;</span><span class="p">):</span>
<span class="n">num_kv_heads_per_cross_attn_layer</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_kv_heads_per_cross_attn_layer</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">num_kv_heads_per_cross_attn_layer</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">ModelConfig</span><span class="p">(</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span><span class="p">,</span>
<span class="n">vocab_size</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
<span class="n">num_layers</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">,</span>
<span class="n">num_heads</span><span class="o">=</span><span class="n">num_heads</span><span class="p">,</span>
<span class="n">num_kv_heads</span><span class="o">=</span><span class="n">num_kv_heads</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">head_size</span><span class="o">=</span><span class="n">head_size</span><span class="p">,</span>
<span class="n">gpt_attention_plugin</span><span class="o">=</span><span class="nb">bool</span><span class="p">(</span>
<span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gpt_attention_plugin</span><span class="p">),</span>
<span class="n">gemm_allreduce_plugin</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">gemm_allreduce_plugin</span><span class="p">,</span>
<span class="n">mamba_conv1d_plugin</span><span class="o">=</span><span class="nb">bool</span><span class="p">(</span>
<span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">mamba_conv1d_plugin</span><span class="p">),</span>
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">,</span>
<span class="n">paged_state</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">paged_state</span><span class="p">,</span>
<span class="n">tokens_per_block</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">tokens_per_block</span><span class="p">,</span>
<span class="n">quant_mode</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">quant_mode</span><span class="p">,</span>
<span class="n">gather_context_logits</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">gather_context_logits</span><span class="p">,</span>
<span class="n">gather_generation_logits</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">gather_generation_logits</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">max_prompt_embedding_table_size</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span>
<span class="n">max_prompt_embedding_table_size</span><span class="p">,</span>
<span class="n">lora_plugin</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">lora_plugin</span><span class="p">,</span>
<span class="n">lora_target_modules</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">lora_config</span><span class="o">.</span><span class="n">lora_target_modules</span><span class="p">,</span>
<span class="n">trtllm_modules_to_hf_modules</span><span class="o">=</span><span class="n">build_config</span><span class="o">.</span><span class="n">lora_config</span><span class="o">.</span>
<span class="n">trtllm_modules_to_hf_modules</span><span class="p">,</span>
<span class="n">max_medusa_tokens</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">max_draft_len</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">pretrained_config</span><span class="p">,</span> <span class="s1">&#39;max_draft_len&#39;</span><span class="p">)</span> <span class="k">else</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">num_medusa_heads</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">num_medusa_heads</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">pretrained_config</span><span class="p">,</span> <span class="s1">&#39;num_medusa_heads&#39;</span><span class="p">)</span> <span class="k">else</span> <span class="mi">0</span><span class="p">,</span>
<span class="o">**</span><span class="n">rnn_configs_kwargs</span><span class="p">,</span>
<span class="n">num_kv_heads_per_layer</span><span class="o">=</span><span class="n">num_kv_heads_per_layer</span><span class="p">,</span>
<span class="n">num_kv_heads_per_cross_attn_layer</span><span class="o">=</span><span class="n">num_kv_heads_per_cross_attn_layer</span><span class="p">,</span>
<span class="n">redrafter_num_beams</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span><span class="n">redrafter_num_beams</span> <span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span>
<span class="n">pretrained_config</span><span class="p">,</span> <span class="s1">&#39;redrafter_num_beams&#39;</span><span class="p">)</span> <span class="k">else</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">redrafter_draft_len_per_beam</span><span class="o">=</span><span class="n">pretrained_config</span><span class="o">.</span>
<span class="n">redrafter_draft_len_per_beam</span>
<span class="k">if</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s1">&#39;redrafter_draft_len_per_beam&#39;</span><span class="p">)</span> <span class="k">else</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="nb">getattr</span><span class="p">(</span><span class="n">build_config</span><span class="p">,</span> <span class="s1">&#39;kv_cache_type&#39;</span><span class="p">,</span>
<span class="n">KVCacheType</span><span class="o">.</span><span class="n">CONTINUOUS</span><span class="p">),</span>
<span class="n">cross_attention</span><span class="o">=</span><span class="nb">getattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span> <span class="s1">&#39;cross_attention&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">),</span>
<span class="n">has_position_embedding</span><span class="o">=</span><span class="nb">getattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span>
<span class="s1">&#39;has_position_embedding&#39;</span><span class="p">,</span> <span class="kc">True</span><span class="p">),</span>
<span class="n">skip_cross_attn_blocks</span><span class="o">=</span><span class="nb">getattr</span><span class="p">(</span><span class="n">pretrained_config</span><span class="p">,</span>
<span class="s1">&#39;skip_cross_attn_blocks&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">),</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">class</span><span class="w"> </span><span class="nc">ModelRunnerMixin</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_check_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_input_ids</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span>
<span class="n">sampling_config</span><span class="p">:</span> <span class="n">SamplingConfig</span><span class="p">):</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch_input_ids</span><span class="p">)</span>
<span class="k">if</span> <span class="n">batch_size</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_batch_size</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Input batch size (</span><span class="si">{</span><span class="n">batch_size</span><span class="si">}</span><span class="s2">) exceeds the engine or specified limit (</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">max_batch_size</span><span class="si">}</span><span class="s2">)&quot;</span>
<span class="p">)</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">batch_input_ids</span><span class="p">]</span>
<span class="n">max_length</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">)</span>
<span class="k">if</span> <span class="n">max_length</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_input_len</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Maximum input length (</span><span class="si">{</span><span class="n">max_length</span><span class="si">}</span><span class="s2">) exceeds the engine or specified limit (</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">max_input_len</span><span class="si">}</span><span class="s2">)&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">max_length</span> <span class="o">+</span> <span class="n">sampling_config</span><span class="o">.</span><span class="n">max_new_tokens</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_seq_len</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Maximum input length (</span><span class="si">{</span><span class="n">max_length</span><span class="si">}</span><span class="s2">) + maximum new tokens (</span><span class="si">{</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">max_new_tokens</span><span class="si">}</span><span class="s2">) exceeds the engine or specified limit (</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">max_seq_len</span><span class="si">}</span><span class="s2">)&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">sampling_config</span><span class="o">.</span><span class="n">num_beams</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_beam_width</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Num beams (</span><span class="si">{</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">num_beams</span><span class="si">}</span><span class="s2">) exceeds the engine or specified limit (</span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">max_beam_width</span><span class="si">}</span><span class="s2">)&quot;</span>
<span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_prepare_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch_input_ids</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span>
<span class="n">pad_id</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]:</span>
<span class="c1"># Cast to int32</span>
<span class="n">batch_input_ids</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">batch_input_ids</span><span class="p">]</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="p">[</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">batch_input_ids</span><span class="p">]</span>
<span class="n">max_length</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="n">batch_input_ids</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span><span class="n">batch_input_ids</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># Right padding for trt-llm</span>
<span class="n">paddings</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">max_length</span> <span class="o">-</span> <span class="n">l</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span> <span class="o">*</span> <span class="n">pad_id</span>
<span class="k">for</span> <span class="n">l</span> <span class="ow">in</span> <span class="n">input_lengths</span>
<span class="p">]</span>
<span class="n">batch_input_ids</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">x</span><span class="p">,</span> <span class="n">pad</span><span class="p">])</span> <span class="k">for</span> <span class="n">x</span><span class="p">,</span> <span class="n">pad</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">batch_input_ids</span><span class="p">,</span> <span class="n">paddings</span><span class="p">)</span>
<span class="p">]</span>
<span class="n">batch_input_ids</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">batch_input_ids</span><span class="p">)</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="k">return</span> <span class="n">batch_input_ids</span><span class="p">,</span> <span class="n">input_lengths</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_prepare_outputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">outputs</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">dict</span><span class="p">],</span>
<span class="n">input_lengths</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">dict</span><span class="p">:</span>
<span class="k">if</span> <span class="n">outputs</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="n">input_lengths</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;context_logits&#39;</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">has_pp</span><span class="p">():</span>
<span class="c1"># If pp size &gt; 1, the context logits and generation logits are both in last pp</span>
<span class="c1"># Last pp rank send context logits and generation logits to rank 0</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="n">context_logits</span> <span class="o">=</span> <span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;context_logits&#39;</span><span class="p">]</span>
<span class="n">context_logits_host</span> <span class="o">=</span> <span class="n">context_logits</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
<span class="n">mpi_comm</span><span class="p">()</span><span class="o">.</span><span class="n">send</span><span class="p">(</span><span class="n">context_logits_host</span><span class="p">,</span> <span class="n">dest</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_first_pp_rank</span><span class="p">():</span>
<span class="n">context_logits_host</span> <span class="o">=</span> <span class="n">mpi_comm</span><span class="p">()</span><span class="o">.</span><span class="n">recv</span><span class="p">(</span>
<span class="n">source</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">prev_pp_rank</span><span class="p">()</span>
<span class="p">)</span> <span class="c1"># Prev pp rank of rank=0 is the last pp</span>
<span class="n">context_logits</span> <span class="o">=</span> <span class="n">context_logits_host</span><span class="o">.</span><span class="n">to</span><span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span>
<span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;context_logits&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">context_logits</span>
<span class="n">context_logits</span> <span class="o">=</span> <span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;context_logits&#39;</span><span class="p">]</span>
<span class="n">context_logits_output</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">,</span> <span class="n">Executor</span><span class="p">)</span> <span class="ow">and</span> <span class="n">batch_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="c1"># The starting position of the context logits buffer of each micro batch is separated</span>
<span class="n">num_batches</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_size</span>
<span class="n">micro_batch_size</span> <span class="o">=</span> <span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="n">batch_size</span> <span class="o">/</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">pp_size</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">num_batches</span><span class="p">):</span>
<span class="n">start_idx</span> <span class="o">=</span> <span class="n">i</span> <span class="o">*</span> <span class="n">micro_batch_size</span>
<span class="n">end_idx</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">start_idx</span> <span class="o">+</span> <span class="n">micro_batch_size</span><span class="p">,</span>
<span class="n">batch_size</span><span class="p">)</span>
<span class="n">micro_context_logits</span> <span class="o">=</span> <span class="n">context_logits</span><span class="p">[</span>
<span class="n">start_idx</span><span class="p">:</span><span class="n">end_idx</span><span class="p">]</span>
<span class="n">micro_input_lengths</span> <span class="o">=</span> <span class="n">input_lengths</span><span class="p">[</span>
<span class="n">start_idx</span><span class="p">:</span><span class="n">end_idx</span><span class="p">]</span>
<span class="n">micro_context_logits</span> <span class="o">=</span> <span class="n">micro_context_logits</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span>
<span class="n">end_dim</span><span class="o">=-</span><span class="mi">2</span><span class="p">)</span>
<span class="n">seg_points</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">micro_input_lengths</span><span class="o">.</span><span class="n">cumsum</span><span class="p">(</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">context_logits_output</span> <span class="o">+=</span> <span class="p">[</span>
<span class="n">micro_context_logits</span><span class="p">[</span><span class="n">s</span><span class="p">:</span><span class="n">e</span><span class="p">]</span>
<span class="k">for</span> <span class="n">s</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">seg_points</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">seg_points</span><span class="p">[</span><span class="mi">1</span><span class="p">:])</span>
<span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">context_logits</span> <span class="o">=</span> <span class="n">context_logits</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="n">end_dim</span><span class="o">=-</span><span class="mi">2</span><span class="p">)</span>
<span class="n">seg_points</span> <span class="o">=</span> <span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">input_lengths</span><span class="o">.</span><span class="n">cumsum</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">context_logits_output</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">context_logits</span><span class="p">[</span><span class="n">s</span><span class="p">:</span><span class="n">e</span><span class="p">]</span>
<span class="k">for</span> <span class="n">s</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">seg_points</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">seg_points</span><span class="p">[</span><span class="mi">1</span><span class="p">:])</span>
<span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">context_logits_output</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">context_logits</span><span class="p">[</span><span class="n">bidx</span><span class="p">,</span> <span class="p">:</span><span class="n">input_lengths</span><span class="p">[</span><span class="n">bidx</span><span class="p">]]</span>
<span class="k">for</span> <span class="n">bidx</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">batch_size</span><span class="p">)</span>
<span class="p">]</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">context_logits_output</span><span class="p">)</span> <span class="o">==</span> <span class="n">batch_size</span>
<span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;context_logits&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">context_logits_output</span>
<span class="k">if</span> <span class="s1">&#39;generation_logits&#39;</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">has_pp</span><span class="p">():</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_last_pp_rank</span><span class="p">():</span>
<span class="n">generation_logits</span> <span class="o">=</span> <span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;generation_logits&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">generation_logits</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">generation_logits_host</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">logits</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span> <span class="k">for</span> <span class="n">logits</span> <span class="ow">in</span> <span class="n">generation_logits</span>
<span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">generation_logits_host</span> <span class="o">=</span> <span class="n">generation_logits</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span>
<span class="n">mpi_comm</span><span class="p">()</span><span class="o">.</span><span class="n">send</span><span class="p">(</span><span class="n">generation_logits_host</span><span class="p">,</span> <span class="n">dest</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">is_first_pp_rank</span><span class="p">():</span>
<span class="n">generation_logits_host</span> <span class="o">=</span> <span class="n">mpi_comm</span><span class="p">()</span><span class="o">.</span><span class="n">recv</span><span class="p">(</span>
<span class="n">source</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">prev_pp_rank</span><span class="p">()</span>
<span class="p">)</span> <span class="c1"># Prev pp rank of rank=0 is the last pp</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">generation_logits_host</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="n">generation_logits</span> <span class="o">=</span> <span class="p">[</span>
<span class="n">logits</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span>
<span class="k">for</span> <span class="n">logits</span> <span class="ow">in</span> <span class="n">generation_logits_host</span>
<span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">generation_logits</span> <span class="o">=</span> <span class="n">generation_logits_host</span><span class="o">.</span><span class="n">to</span><span class="p">(</span>
<span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s1">&#39;cuda:0&#39;</span><span class="p">))</span>
<span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;generation_logits&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">generation_logits</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">,</span> <span class="n">GenerationSession</span><span class="p">):</span>
<span class="c1"># Convert logits format to be same as GptSession</span>
<span class="n">generation_logits</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span>
<span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;generation_logits&#39;</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">batch_x_beam</span><span class="p">,</span> <span class="n">max_gen_len</span><span class="p">,</span> <span class="n">voc_size</span> <span class="o">=</span> <span class="n">generation_logits</span><span class="o">.</span><span class="n">size</span><span class="p">(</span>
<span class="p">)</span>
<span class="n">num_beams</span> <span class="o">=</span> <span class="n">batch_x_beam</span> <span class="o">//</span> <span class="n">batch_size</span>
<span class="n">generation_logits</span> <span class="o">=</span> <span class="n">generation_logits</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">batch_size</span><span class="p">,</span> <span class="n">num_beams</span><span class="p">,</span> <span class="n">max_gen_len</span><span class="p">,</span> <span class="n">voc_size</span><span class="p">)</span>
<span class="n">outputs</span><span class="p">[</span><span class="s1">&#39;generation_logits&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">generation_logits</span>
<span class="k">return</span> <span class="n">outputs</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_prepare_embedding_table</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prompt_table</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">prompt_table</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
<span class="n">prompt_table_data</span> <span class="o">=</span> <span class="n">numpy_to_torch</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">prompt_table</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span>
<span class="n">prompt_table</span><span class="p">,</span>
<span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">),</span> <span class="s2">&quot;Prompt table should be str or torch.Tensor&quot;</span>
<span class="n">prompt_table_data</span> <span class="o">=</span> <span class="n">prompt_table</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">return</span> <span class="n">prompt_table_data</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_prepare_ptuning</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">prompt_table</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span>
<span class="n">tasks</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_prompt_embedding_table_size</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{}</span>
<span class="k">if</span> <span class="n">prompt_table</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">prompt_table_data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prepare_embedding_table</span><span class="p">(</span><span class="n">prompt_table</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">prompt_table_data</span><span class="o">.</span><span class="n">size</span><span class="p">())</span> <span class="o">==</span> <span class="mi">3</span><span class="p">:</span>
<span class="n">_</span><span class="p">,</span> <span class="n">task_vocab_size</span><span class="p">,</span> <span class="n">hidden_size</span> <span class="o">=</span> <span class="n">prompt_table_data</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="k">elif</span> <span class="nb">len</span><span class="p">(</span><span class="n">prompt_table_data</span><span class="o">.</span><span class="n">size</span><span class="p">())</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="n">task_vocab_size</span><span class="p">,</span> <span class="n">hidden_size</span> <span class="o">=</span> <span class="n">prompt_table_data</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">task_vocab_size</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="n">task_vocab_size</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="n">prompt_table_data</span> <span class="o">=</span> <span class="n">prompt_table_data</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">prompt_table_data</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">(</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">hidden_size</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">task_vocab_size</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="k">if</span> <span class="n">tasks</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">tasks</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="nb">int</span><span class="p">(</span><span class="n">t</span><span class="p">)</span> <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="n">tasks</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">&#39;,&#39;</span><span class="p">)],</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">tasks</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="o">==</span> <span class="n">batch_size</span><span class="p">,</span> \
<span class="sa">f</span><span class="s2">&quot;Number of supplied tasks (</span><span class="si">{</span><span class="n">tasks</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="si">}</span><span class="s2">) must match input batch size (</span><span class="si">{</span><span class="n">batch_size</span><span class="si">}</span><span class="s2">)&quot;</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">tasks</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="n">batch_size</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="p">,</span> <span class="n">GenerationSession</span><span class="p">):</span>
<span class="k">return</span> <span class="p">{</span>
<span class="s1">&#39;prompt_embedding_table&#39;</span><span class="p">:</span> <span class="n">prompt_table_data</span><span class="o">.</span><span class="n">cuda</span><span class="p">(),</span>
<span class="s1">&#39;tasks&#39;</span><span class="p">:</span> <span class="n">tasks</span><span class="o">.</span><span class="n">cuda</span><span class="p">(),</span>
<span class="s1">&#39;prompt_vocab_size&#39;</span><span class="p">:</span> <span class="n">task_vocab_size</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="p">}</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{</span>
<span class="s1">&#39;embedding_table&#39;</span><span class="p">:</span> <span class="n">prompt_table_data</span><span class="o">.</span><span class="n">cuda</span><span class="p">(),</span>
<span class="s1">&#39;tasks&#39;</span><span class="p">:</span> <span class="n">tasks</span><span class="o">.</span><span class="n">cuda</span><span class="p">(),</span>
<span class="s1">&#39;vocab_size&#39;</span><span class="p">:</span> <span class="n">task_vocab_size</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="p">}</span>
<div class="viewcode-block" id="ModelRunner">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.runtime.html#tensorrt_llm.runtime.ModelRunner">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">ModelRunner</span><span class="p">(</span><span class="n">ModelRunnerMixin</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> An interface class that wraps GenerationSession and provides generation methods.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">session</span><span class="p">:</span> <span class="n">GenerationSession</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">max_input_len</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">max_seq_len</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="p">:</span> <span class="n">KVCacheType</span><span class="p">,</span>
<span class="n">lora_manager</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">LoraManager</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create a ModelRunner instance.</span>
<span class="sd"> You are recommended to use the from_dir method to load the engine and create a ModelRunner instance.</span>
<span class="sd"> Args:</span>
<span class="sd"> session (GenerationSession):</span>
<span class="sd"> The TensorRT session created from an engine.</span>
<span class="sd"> max_batch_size (int):</span>
<span class="sd"> The maximum batch size allowed for the input.</span>
<span class="sd"> max_input_len (int):</span>
<span class="sd"> The maximum input length allowed for the input.</span>
<span class="sd"> max_seq_len (int):</span>
<span class="sd"> The maximum sequence length (input + new tokens).</span>
<span class="sd"> max_beam_width (int):</span>
<span class="sd"> The maximum beam width.</span>
<span class="sd"> lora_manager (LoraManager):</span>
<span class="sd"> The LoRA manager to handle LoRA weights.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">session</span> <span class="o">=</span> <span class="n">session</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">max_batch_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_input_len</span> <span class="o">=</span> <span class="n">max_input_len</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">max_seq_len</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_beam_width</span> <span class="o">=</span> <span class="n">max_beam_width</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lora_manager</span> <span class="o">=</span> <span class="n">lora_manager</span>
<span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_type</span> <span class="o">=</span> <span class="n">kv_cache_type</span>
<span class="bp">self</span><span class="o">.</span><span class="n">enable_context_fmha_fp32_acc</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">multi_block_mode</span> <span class="o">=</span> <span class="kc">True</span>
<div class="viewcode-block" id="ModelRunner.from_engine">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.runtime.html#tensorrt_llm.runtime.ModelRunner.from_engine">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_engine</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">engine</span><span class="p">:</span> <span class="n">Engine</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">max_output_len</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span>
<span class="n">lora_dir</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]],</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">debug_mode</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="n">lora_ckpt_source</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="n">medusa_choices</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span>
<span class="n">stream</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">Stream</span><span class="p">,</span>
<span class="n">gpu_weights_percent</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">enable_context_fmha_fp32_acc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<span class="n">multi_block_mode</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">],</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s1">&#39;ModelRunner&#39;</span><span class="p">:</span>
<span class="n">model_config</span> <span class="o">=</span> <span class="n">_engine_config_to_model_config</span><span class="p">(</span>
<span class="n">engine</span><span class="o">.</span><span class="n">config</span><span class="p">,</span> <span class="n">gpu_weights_percent</span><span class="o">=</span><span class="n">gpu_weights_percent</span><span class="p">)</span>
<span class="k">if</span> <span class="n">model_config</span><span class="o">.</span><span class="n">kv_cache_type</span> <span class="o">==</span> <span class="n">KVCacheType</span><span class="o">.</span><span class="n">DISABLED</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">max_output_len</span> <span class="o">==</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">max_output_len</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">,</span> <span class="s1">&#39;Disabled KV cache is intended for context phase only now.&#39;</span>
<span class="n">pretrained_config</span> <span class="o">=</span> <span class="n">engine</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">pretrained_config</span>
<span class="n">build_config</span> <span class="o">=</span> <span class="n">engine</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">build_config</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_batch_size</span>
<span class="n">max_input_len</span> <span class="o">=</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_input_len</span>
<span class="n">max_seq_len</span> <span class="o">=</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_seq_len</span>
<span class="n">max_beam_width</span> <span class="o">=</span> <span class="n">build_config</span><span class="o">.</span><span class="n">max_beam_width</span>
<span class="k">if</span> <span class="s1">&#39;GLM&#39;</span> <span class="ow">in</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">architecture</span> <span class="ow">and</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">chatglm_version</span> <span class="ow">in</span> <span class="p">[</span>
<span class="s1">&#39;glm&#39;</span><span class="p">,</span> <span class="s1">&#39;chatglm&#39;</span>
<span class="p">]:</span>
<span class="n">session_cls</span> <span class="o">=</span> <span class="n">ChatGLMGenerationSession</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">session_cls</span> <span class="o">=</span> <span class="n">GenerationSession</span>
<span class="n">engine_buffer</span> <span class="o">=</span> <span class="n">engine</span><span class="o">.</span><span class="n">engine</span>
<span class="n">runtime_mapping</span> <span class="o">=</span> <span class="n">pretrained_config</span><span class="o">.</span><span class="n">mapping</span>
<span class="k">if</span> <span class="n">medusa_choices</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">session_cls</span> <span class="o">==</span> <span class="n">GenerationSession</span><span class="p">,</span> <span class="s2">&quot;Medusa is only supported by GenerationSession&quot;</span>
<span class="k">assert</span> <span class="n">model_config</span><span class="o">.</span><span class="n">max_medusa_tokens</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">,</span> \
<span class="s2">&quot;medusa_chioce is specified but model_config.max_medusa_tokens is 0.&quot;</span>
<span class="k">if</span> <span class="n">MpiComm</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">&gt;</span> <span class="n">runtime_mapping</span><span class="o">.</span><span class="n">gpus_per_node</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">MpiComm</span><span class="o">.</span><span class="n">local_size</span><span class="p">()</span> <span class="o">==</span> <span class="n">runtime_mapping</span><span class="o">.</span><span class="n">gpus_per_node</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">DISABLE_TORCH_DEVICE_SET</span><span class="p">:</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">set_device</span><span class="p">(</span><span class="n">rank</span> <span class="o">%</span> <span class="n">runtime_mapping</span><span class="o">.</span><span class="n">gpus_per_node</span><span class="p">)</span>
<span class="n">session</span> <span class="o">=</span> <span class="n">session_cls</span><span class="p">(</span><span class="n">model_config</span><span class="p">,</span>
<span class="n">engine_buffer</span><span class="p">,</span>
<span class="n">runtime_mapping</span><span class="p">,</span>
<span class="n">debug_mode</span><span class="o">=</span><span class="n">debug_mode</span><span class="p">,</span>
<span class="n">stream</span><span class="o">=</span><span class="n">stream</span><span class="p">)</span>
<span class="k">if</span> <span class="n">session</span><span class="o">.</span><span class="n">runtime</span><span class="o">.</span><span class="n">engine</span><span class="o">.</span><span class="n">streamable_weights_size</span><span class="p">:</span>
<span class="n">session</span><span class="o">.</span><span class="n">runtime</span><span class="o">.</span><span class="n">_set_weight_streaming</span><span class="p">(</span><span class="n">gpu_weights_percent</span><span class="p">)</span>
<span class="k">if</span> <span class="n">session</span><span class="o">.</span><span class="n">use_lora_plugin</span><span class="p">:</span>
<span class="n">lora_manager</span> <span class="o">=</span> <span class="n">LoraManager</span><span class="p">(</span><span class="n">mapping</span><span class="o">=</span><span class="n">runtime_mapping</span><span class="p">,</span>
<span class="n">model_config</span><span class="o">=</span><span class="n">model_config</span><span class="p">)</span>
<span class="k">if</span> <span class="n">lora_dir</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lora_manager</span><span class="o">.</span><span class="n">load_from_ckpt</span><span class="p">(</span><span class="n">lora_dir</span><span class="p">,</span>
<span class="n">model_config</span><span class="o">=</span><span class="n">model_config</span><span class="p">,</span>
<span class="n">ckpt_source</span><span class="o">=</span><span class="n">lora_ckpt_source</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">lora_manager</span> <span class="o">=</span> <span class="kc">None</span>
<span class="n">runner</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="n">session</span><span class="o">=</span><span class="n">session</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_input_len</span><span class="o">=</span><span class="n">max_input_len</span><span class="p">,</span>
<span class="n">max_seq_len</span><span class="o">=</span><span class="n">max_seq_len</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="n">max_beam_width</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">model_config</span><span class="o">.</span><span class="n">kv_cache_type</span><span class="p">,</span>
<span class="n">lora_manager</span><span class="o">=</span><span class="n">lora_manager</span><span class="p">)</span>
<span class="n">runner</span><span class="o">.</span><span class="n">enable_context_fmha_fp32_acc</span> <span class="o">=</span> <span class="n">enable_context_fmha_fp32_acc</span>
<span class="n">runner</span><span class="o">.</span><span class="n">multi_block_mode</span> <span class="o">=</span> <span class="n">multi_block_mode</span>
<span class="k">return</span> <span class="n">runner</span></div>
<div class="viewcode-block" id="ModelRunner.from_dir">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.runtime.html#tensorrt_llm.runtime.ModelRunner.from_dir">[docs]</a>
<span class="nd">@classmethod</span>
<span class="k">def</span><span class="w"> </span><span class="nf">from_dir</span><span class="p">(</span>
<span class="bp">cls</span><span class="p">,</span>
<span class="n">engine_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span>
<span class="o">*</span><span class="p">,</span>
<span class="n">max_output_len</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">lora_dir</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">rank</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">debug_mode</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">lora_ckpt_source</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;hf&quot;</span><span class="p">,</span>
<span class="n">medusa_choices</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">stream</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">Stream</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">gpu_weights_percent</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">enable_context_fmha_fp32_acc</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">multi_block_mode</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">fail_fast_on_attention_window_too_large</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="s1">&#39;ModelRunner&#39;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create a ModelRunner instance from an engine directory.</span>
<span class="sd"> Args:</span>
<span class="sd"> engine_dir (str):</span>
<span class="sd"> The directory that contains the serialized engine files and config files.</span>
<span class="sd"> max_output_len (Optional[int]):</span>
<span class="sd"> max_output_len, this arg might be available only when loading time, generate will still to check when disable_kv_cache is enabled.</span>
<span class="sd"> lora_dir (Optional[List[str]]):</span>
<span class="sd"> The directories that contain LoRA weights.</span>
<span class="sd"> rank (int):</span>
<span class="sd"> The runtime rank id.</span>
<span class="sd"> debug_mode (bool):</span>
<span class="sd"> Whether or not to turn on the debug mode.</span>
<span class="sd"> medusa_choices (List[List[int]]):</span>
<span class="sd"> Medusa choices to use when in Medusa decoding</span>
<span class="sd"> stream (torch.cuda.Stream):</span>
<span class="sd"> Stream to use.</span>
<span class="sd"> multi_block_mode (bool):</span>
<span class="sd"> Whether to distribute the work across multiple CUDA thread-blocks on the GPU for masked MHA kernel.</span>
<span class="sd"> fail_fast_on_attention_window_too_large (bool):</span>
<span class="sd"> Exit with runtime error when attention window is too large to fit even a single sequence in the KV cache.</span>
<span class="sd"> Note: This parameter is only applicable to C++ runtime (ModelRunnerCpp).</span>
<span class="sd"> Returns:</span>
<span class="sd"> ModelRunner: An instance of ModelRunner.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">engine_version</span> <span class="o">=</span> <span class="n">get_engine_version</span><span class="p">(</span><span class="n">engine_dir</span><span class="p">)</span>
<span class="n">profiler</span><span class="o">.</span><span class="n">start</span><span class="p">(</span><span class="s1">&#39;load tensorrt_llm engine&#39;</span><span class="p">)</span>
<span class="c1"># the old engine format</span>
<span class="k">if</span> <span class="n">engine_version</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">engine_dir</span> <span class="o">=</span> <span class="n">Path</span><span class="p">(</span><span class="n">engine_dir</span><span class="p">)</span>
<span class="n">config_path</span> <span class="o">=</span> <span class="n">engine_dir</span> <span class="o">/</span> <span class="s2">&quot;config.json&quot;</span>
<span class="n">model_config</span><span class="p">,</span> <span class="n">other_config</span> <span class="o">=</span> <span class="n">read_config</span><span class="p">(</span><span class="n">config_path</span><span class="p">)</span>
<span class="n">world_size</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;world_size&#39;</span><span class="p">)</span>
<span class="n">tp_size</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;tp_size&#39;</span><span class="p">)</span>
<span class="n">pp_size</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;pp_size&#39;</span><span class="p">)</span>
<span class="n">max_batch_size</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;max_batch_size&#39;</span><span class="p">)</span>
<span class="n">max_input_len</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;max_input_len&#39;</span><span class="p">)</span>
<span class="n">max_output_len</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;max_output_len&#39;</span><span class="p">)</span>
<span class="n">max_beam_width</span> <span class="o">=</span> <span class="n">other_config</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;max_beam_width&#39;</span><span class="p">)</span>
<span class="n">runtime_mapping</span> <span class="o">=</span> <span class="n">Mapping</span><span class="p">(</span><span class="n">world_size</span><span class="o">=</span><span class="n">world_size</span><span class="p">,</span>
<span class="n">rank</span><span class="o">=</span><span class="n">rank</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">pp_size</span><span class="o">=</span><span class="n">pp_size</span><span class="p">)</span>
<span class="n">engine_name</span> <span class="o">=</span> <span class="n">get_engine_name</span><span class="p">(</span><span class="n">model_config</span><span class="o">.</span><span class="n">model_name</span><span class="p">,</span>
<span class="n">model_config</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span> <span class="n">pp_size</span><span class="p">,</span>
<span class="n">rank</span><span class="p">)</span>
<span class="n">serialize_path</span> <span class="o">=</span> <span class="n">engine_dir</span> <span class="o">/</span> <span class="n">engine_name</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">serialize_path</span><span class="p">,</span> <span class="s1">&#39;rb&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
<span class="n">engine_buffer</span> <span class="o">=</span> <span class="n">f</span><span class="o">.</span><span class="n">read</span><span class="p">()</span>
<span class="k">if</span> <span class="n">model_config</span><span class="o">.</span><span class="n">model_name</span> <span class="ow">in</span> <span class="p">(</span><span class="s1">&#39;chatglm_6b&#39;</span><span class="p">,</span> <span class="s1">&#39;glm_10b&#39;</span><span class="p">):</span>
<span class="n">session_cls</span> <span class="o">=</span> <span class="n">ChatGLMGenerationSession</span>
<span class="k">elif</span> <span class="n">model_config</span><span class="o">.</span><span class="n">model_name</span> <span class="o">==</span> <span class="s1">&#39;qwen&#39;</span><span class="p">:</span>
<span class="n">session_cls</span> <span class="o">=</span> <span class="n">QWenForCausalLMGenerationSession</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">session_cls</span> <span class="o">=</span> <span class="n">GenerationSession</span>
<span class="k">if</span> <span class="n">medusa_choices</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">model_config</span><span class="o">.</span><span class="n">max_medusa_tokens</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">,</span> \
<span class="s2">&quot;medusa_choice is specified but model_config.max_medusa_tokens is 0.&quot;</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">DISABLE_TORCH_DEVICE_SET</span><span class="p">:</span>
<span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">set_device</span><span class="p">(</span><span class="n">rank</span> <span class="o">%</span> <span class="n">runtime_mapping</span><span class="o">.</span><span class="n">gpus_per_node</span><span class="p">)</span>
<span class="n">session</span> <span class="o">=</span> <span class="n">session_cls</span><span class="p">(</span><span class="n">model_config</span><span class="p">,</span>
<span class="n">engine_buffer</span><span class="p">,</span>
<span class="n">runtime_mapping</span><span class="p">,</span>
<span class="n">debug_mode</span><span class="o">=</span><span class="n">debug_mode</span><span class="p">,</span>
<span class="n">stream</span><span class="o">=</span><span class="n">stream</span><span class="p">)</span>
<span class="k">if</span> <span class="n">session</span><span class="o">.</span><span class="n">use_lora_plugin</span><span class="p">:</span>
<span class="n">lora_manager</span> <span class="o">=</span> <span class="n">LoraManager</span><span class="p">(</span><span class="n">mapping</span><span class="o">=</span><span class="n">runtime_mapping</span><span class="p">,</span>
<span class="n">model_config</span><span class="o">=</span><span class="n">model_config</span><span class="p">)</span>
<span class="k">if</span> <span class="n">lora_dir</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">lora_manager</span><span class="o">.</span><span class="n">load_from_ckpt</span><span class="p">(</span><span class="n">lora_dir</span><span class="p">,</span>
<span class="n">model_config</span><span class="o">=</span><span class="n">model_config</span><span class="p">,</span>
<span class="n">ckpt_source</span><span class="o">=</span><span class="n">lora_ckpt_source</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">lora_manager</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">session</span><span class="o">.</span><span class="n">runtime</span><span class="o">.</span><span class="n">engine</span><span class="o">.</span><span class="n">streamable_weights_size</span><span class="p">:</span>
<span class="n">session</span><span class="o">.</span><span class="n">runtime</span><span class="o">.</span><span class="n">_set_weight_streaming</span><span class="p">(</span><span class="n">gpu_weights_percent</span><span class="p">)</span>
<span class="n">profiler</span><span class="o">.</span><span class="n">stop</span><span class="p">(</span><span class="s1">&#39;load tensorrt_llm engine&#39;</span><span class="p">)</span>
<span class="n">loading_time</span> <span class="o">=</span> <span class="n">profiler</span><span class="o">.</span><span class="n">elapsed_time_in_sec</span><span class="p">(</span>
<span class="s2">&quot;load tensorrt_llm engine&quot;</span><span class="p">)</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Load engine takes: </span><span class="si">{</span><span class="n">loading_time</span><span class="si">}</span><span class="s1"> sec&#39;</span><span class="p">)</span>
<span class="n">runner</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="n">session</span><span class="o">=</span><span class="n">session</span><span class="p">,</span>
<span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="n">max_input_len</span><span class="o">=</span><span class="n">max_input_len</span><span class="p">,</span>
<span class="n">max_seq_len</span><span class="o">=</span><span class="n">max_input_len</span> <span class="o">+</span> <span class="n">max_output_len</span><span class="p">,</span>
<span class="n">max_beam_width</span><span class="o">=</span><span class="n">max_beam_width</span><span class="p">,</span>
<span class="n">kv_cache_type</span><span class="o">=</span><span class="n">KVCacheType</span><span class="o">.</span><span class="n">CONTINUOUS</span><span class="p">,</span>
<span class="n">lora_manager</span><span class="o">=</span><span class="n">lora_manager</span><span class="p">)</span>
<span class="n">runner</span><span class="o">.</span><span class="n">enable_context_fmha_fp32_acc</span> <span class="o">=</span> <span class="n">enable_context_fmha_fp32_acc</span>
<span class="n">runner</span><span class="o">.</span><span class="n">multi_block_mode</span> <span class="o">=</span> <span class="n">multi_block_mode</span>
<span class="k">return</span> <span class="n">runner</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># the new engine format</span>
<span class="n">engine</span> <span class="o">=</span> <span class="n">Engine</span><span class="o">.</span><span class="n">from_dir</span><span class="p">(</span><span class="n">engine_dir</span><span class="p">,</span> <span class="n">rank</span><span class="p">)</span>
<span class="k">if</span> <span class="n">lora_dir</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">config_lora_dir</span> <span class="o">=</span> <span class="n">engine</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">lora_config</span><span class="o">.</span><span class="n">lora_dir</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">config_lora_dir</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">lora_dir</span> <span class="o">=</span> <span class="p">[</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">engine_dir</span><span class="si">}</span><span class="s2">/</span><span class="si">{</span><span class="nb">dir</span><span class="si">}</span><span class="s2">&quot;</span> <span class="k">for</span> <span class="nb">dir</span> <span class="ow">in</span> <span class="n">config_lora_dir</span>
<span class="p">]</span>
<span class="n">lora_ckpt_source</span> <span class="o">=</span> <span class="n">engine</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">build_config</span><span class="o">.</span><span class="n">lora_config</span><span class="o">.</span><span class="n">lora_ckpt_source</span>
<span class="n">runner</span> <span class="o">=</span> <span class="n">ModelRunner</span><span class="o">.</span><span class="n">from_engine</span><span class="p">(</span>
<span class="n">engine</span><span class="o">=</span><span class="n">engine</span><span class="p">,</span>
<span class="n">max_output_len</span><span class="o">=</span><span class="n">max_output_len</span><span class="p">,</span>
<span class="n">lora_dir</span><span class="o">=</span><span class="n">lora_dir</span><span class="p">,</span>
<span class="n">rank</span><span class="o">=</span><span class="n">rank</span><span class="p">,</span>
<span class="n">debug_mode</span><span class="o">=</span><span class="n">debug_mode</span><span class="p">,</span>
<span class="n">lora_ckpt_source</span><span class="o">=</span><span class="n">lora_ckpt_source</span><span class="p">,</span>
<span class="n">medusa_choices</span><span class="o">=</span><span class="n">medusa_choices</span><span class="p">,</span>
<span class="n">stream</span><span class="o">=</span><span class="n">stream</span><span class="p">,</span>
<span class="n">gpu_weights_percent</span><span class="o">=</span><span class="n">gpu_weights_percent</span><span class="p">,</span>
<span class="n">enable_context_fmha_fp32_acc</span><span class="o">=</span><span class="n">enable_context_fmha_fp32_acc</span><span class="p">,</span>
<span class="n">multi_block_mode</span><span class="o">=</span><span class="n">multi_block_mode</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">profiler</span><span class="o">.</span><span class="n">stop</span><span class="p">(</span><span class="s1">&#39;load tensorrt_llm engine&#39;</span><span class="p">)</span>
<span class="n">loading_time</span> <span class="o">=</span> <span class="n">profiler</span><span class="o">.</span><span class="n">elapsed_time_in_sec</span><span class="p">(</span>
<span class="s2">&quot;load tensorrt_llm engine&quot;</span><span class="p">)</span>
<span class="n">logger</span><span class="o">.</span><span class="n">info</span><span class="p">(</span><span class="sa">f</span><span class="s1">&#39;Load engine takes: </span><span class="si">{</span><span class="n">loading_time</span><span class="si">}</span><span class="s1"> sec&#39;</span><span class="p">)</span>
<span class="k">return</span> <span class="n">runner</span></div>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">dtype</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">torch</span><span class="o">.</span><span class="n">dtype</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">dtype</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">vocab_size</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">vocab_size</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">vocab_size_padded</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">vocab_size_padded</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">hidden_size</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">hidden_size</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">num_heads</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">num_heads</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">num_layers</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">num_layers</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">max_sequence_length</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_seq_len</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">remove_input_padding</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">remove_input_padding</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">use_lora_plugin</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">use_lora_plugin</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">max_prompt_embedding_table_size</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">max_prompt_embedding_table_size</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">mapping</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Mapping</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">mapping</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">gather_context_logits</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">gather_context_logits</span>
<span class="nd">@property</span>
<span class="k">def</span><span class="w"> </span><span class="nf">gather_generation_logits</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">gather_generation_logits</span>
<div class="viewcode-block" id="ModelRunner.generate">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.runtime.html#tensorrt_llm.runtime.ModelRunner.generate">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">batch_input_ids</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">],</span>
<span class="n">position_ids</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">sampling_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">SamplingConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_table</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">prompt_tasks</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">lora_uids</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">streaming</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">output_generation_logits</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">stopping_criteria</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">StoppingCriteria</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">logits_processor</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">LogitsProcessor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">medusa_choices</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_max_input_length</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_input_features</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">encoder_output_lengths</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cross_attention_masks</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="nb">dict</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Generates sequences of token ids.</span>
<span class="sd"> The generation-controlling parameters are set in the sampling_config; it will be set to a default one if not passed.</span>
<span class="sd"> You can override any sampling_config&#39;s attributes by passing corresponding parameters.</span>
<span class="sd"> Args:</span>
<span class="sd"> batch_input_ids (List[torch.Tensor]):</span>
<span class="sd"> A list of input id tensors. Each tensor is of shape (sequence_length, ).</span>
<span class="sd"> sampling_config (SamplingConfig):</span>
<span class="sd"> The sampling configuration to be used as base parametrization for the generation call.</span>
<span class="sd"> The passed **kwargs matching the sampling_config&#39;s attributes will override them.</span>
<span class="sd"> If the sampling_config is not provided, a default will be used.</span>
<span class="sd"> prompt_table (str or torch.Tensor):</span>
<span class="sd"> The file path of prompt table (.npy format, exported by nemo_prompt_convert.py) or the prompt table itself.</span>
<span class="sd"> prompt_tasks (str):</span>
<span class="sd"> The prompt tuning task ids for the input batch, in format of comma-separated list (e.g., 0,3,1,0).</span>
<span class="sd"> lora_uids (list):</span>
<span class="sd"> The uids of LoRA weights for the input batch. Use -1 to disable the LoRA module.</span>
<span class="sd"> streaming (bool):</span>
<span class="sd"> Whether or not to use streaming mode for generation.</span>
<span class="sd"> stopping_criteria (StoppingCriteria):</span>
<span class="sd"> Custom stopping criteria.</span>
<span class="sd"> logits_processor (LogitsProcessor):</span>
<span class="sd"> Custom logits processors.</span>
<span class="sd"> medusa_choices (List[List[int]]):</span>
<span class="sd"> Medusa decoding choices.</span>
<span class="sd"> kwargs (Dict[str, Any]:</span>
<span class="sd"> Ad hoc parametrization of sampling_config.</span>
<span class="sd"> The passed **kwargs matching the sampling_config&#39;s attributes will override them.</span>
<span class="sd"> Returns:</span>
<span class="sd"> torch.Tensor or dict:</span>
<span class="sd"> If return_dict=False, the method returns generated output_ids.</span>
<span class="sd"> If return_dict=True, the method returns a dict of output_ids,</span>
<span class="sd"> sequence_lengths (if sampling_config.output_sequence_lengths=True),</span>
<span class="sd"> context_logits and generation_logits (if self.gather_context_logits=True</span>
<span class="sd"> and self.gather_generation_logits=True, respectively).</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># Use sampling_config like HF&#39;s generation_config</span>
<span class="k">if</span> <span class="n">sampling_config</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">sampling_config</span> <span class="o">=</span> <span class="n">SamplingConfig</span><span class="p">(</span><span class="n">end_id</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">pad_id</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">sampling_config</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="n">sampling_config</span><span class="p">)</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="c1"># To prevent numerical overflow when the temperature is set to 0.0</span>
<span class="c1"># Modify generation.SamplingConfig</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">temperature</span><span class="p">,</span>
<span class="nb">float</span><span class="p">)</span> <span class="ow">and</span> <span class="n">sampling_config</span><span class="o">.</span><span class="n">temperature</span> <span class="o">==</span> <span class="mf">0.0</span><span class="p">:</span>
<span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
<span class="s2">&quot;Convert `temperature=0.0` to `temperature=1.0` and `top_k=1` to prevent overflow.&quot;</span>
<span class="p">)</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">temperature</span> <span class="o">=</span> <span class="mf">1.0</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">top_k</span> <span class="o">=</span> <span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_check_inputs</span><span class="p">(</span><span class="n">batch_input_ids</span><span class="p">,</span> <span class="n">sampling_config</span><span class="p">)</span>
<span class="k">if</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;num_return_sequences&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="s1">&#39;num_return_sequences will be ignored since &#39;</span>
<span class="s1">&#39;num_return_sequences &gt; 1 is not supported on python runtime. &#39;</span>
<span class="s1">&#39;Please use C++ runtime.&#39;</span><span class="p">)</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch_input_ids</span><span class="p">)</span>
<span class="n">batch_input_ids</span><span class="p">,</span> <span class="n">input_lengths</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prepare_inputs</span><span class="p">(</span>
<span class="n">batch_input_ids</span><span class="p">,</span> <span class="n">sampling_config</span><span class="o">.</span><span class="n">pad_id</span><span class="p">)</span>
<span class="k">def</span><span class="w"> </span><span class="nf">maybe_convert_to_words_list_format</span><span class="p">(</span>
<span class="n">words_list</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="nb">list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]]</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Optional</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]:</span>
<span class="k">if</span> <span class="n">words_list</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">words_list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span>
<span class="k">return</span> <span class="n">words_list</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">words_list</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="k">return</span> <span class="n">words_list</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">words_list</span><span class="p">,</span> <span class="nb">list</span><span class="p">):</span>
<span class="k">return</span> <span class="n">to_word_list_format</span><span class="p">(</span><span class="n">words_list</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Unexpected words_list type=</span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">words_list</span><span class="p">)</span><span class="si">}</span><span class="s2">. Only list, np.ndarray, and torch.Tensor are supported.&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">cross_attention_masks</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">encoder_input_features</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span><span class="n">encoder_input_features</span><span class="p">)</span>
<span class="n">encoder_output_lengths</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span><span class="n">encoder_output_lengths</span><span class="p">)</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">bad_words_list</span> <span class="o">=</span> <span class="n">maybe_convert_to_words_list_format</span><span class="p">(</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">bad_words_list</span><span class="p">)</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">stop_words_list</span> <span class="o">=</span> <span class="n">maybe_convert_to_words_list_format</span><span class="p">(</span>
<span class="n">sampling_config</span><span class="o">.</span><span class="n">stop_words_list</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">kv_cache_type</span> <span class="ow">and</span> <span class="n">sampling_config</span><span class="o">.</span><span class="n">max_new_tokens</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span>
<span class="s1">&#39;Disabled KV cache is intended for context phase only now.&#39;</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">setup</span><span class="p">(</span>
<span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span>
<span class="n">max_context_length</span><span class="o">=</span><span class="n">input_lengths</span><span class="o">.</span><span class="n">max</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">(),</span>
<span class="n">max_new_tokens</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">max_new_tokens</span><span class="p">,</span>
<span class="n">beam_width</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">num_beams</span><span class="p">,</span>
<span class="n">max_attention_window_size</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">max_attention_window_size</span><span class="p">,</span>
<span class="n">sink_token_length</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">sink_token_length</span><span class="p">,</span>
<span class="n">lora_manager</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">lora_manager</span><span class="p">,</span>
<span class="n">lora_uids</span><span class="o">=</span><span class="n">lora_uids</span><span class="p">,</span>
<span class="n">medusa_choices</span><span class="o">=</span><span class="n">medusa_choices</span><span class="p">,</span>
<span class="n">enable_context_fmha_fp32_acc</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">enable_context_fmha_fp32_acc</span><span class="p">,</span>
<span class="n">multi_block_mode</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">multi_block_mode</span><span class="p">,</span>
<span class="n">encoder_max_input_length</span><span class="o">=</span><span class="n">encoder_max_input_length</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">batch_input_ids</span> <span class="o">=</span> <span class="n">batch_input_ids</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">input_lengths</span> <span class="o">=</span> <span class="n">input_lengths</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">other_kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prepare_ptuning</span><span class="p">(</span><span class="n">prompt_table</span><span class="p">,</span> <span class="n">prompt_tasks</span><span class="p">,</span>
<span class="n">batch_size</span><span class="p">)</span>
<span class="n">other_kwargs</span><span class="p">[</span><span class="s1">&#39;skip_cross_attn_blocks&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span>
<span class="s1">&#39;skip_cross_attn_blocks&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">decode</span><span class="p">(</span>
<span class="n">batch_input_ids</span><span class="p">,</span>
<span class="n">input_lengths</span><span class="p">,</span>
<span class="n">sampling_config</span><span class="p">,</span>
<span class="n">stop_words_list</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">stop_words_list</span><span class="p">,</span>
<span class="n">bad_words_list</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">bad_words_list</span><span class="p">,</span>
<span class="n">output_sequence_lengths</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">output_sequence_lengths</span><span class="p">,</span>
<span class="n">output_generation_logits</span><span class="o">=</span><span class="n">output_generation_logits</span><span class="p">,</span>
<span class="n">return_dict</span><span class="o">=</span><span class="n">sampling_config</span><span class="o">.</span><span class="n">return_dict</span><span class="p">,</span>
<span class="n">streaming</span><span class="o">=</span><span class="n">streaming</span><span class="p">,</span>
<span class="n">stopping_criteria</span><span class="o">=</span><span class="n">stopping_criteria</span><span class="p">,</span>
<span class="n">logits_processor</span><span class="o">=</span><span class="n">logits_processor</span><span class="p">,</span>
<span class="n">position_ids</span><span class="o">=</span><span class="n">position_ids</span><span class="p">,</span>
<span class="n">encoder_output</span><span class="o">=</span><span class="n">encoder_input_features</span><span class="p">,</span>
<span class="n">encoder_input_lengths</span><span class="o">=</span><span class="n">encoder_output_lengths</span><span class="p">,</span>
<span class="n">cross_attention_mask</span><span class="o">=</span><span class="n">cross_attention_masks</span><span class="p">,</span>
<span class="o">**</span><span class="n">other_kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">sampling_config</span><span class="o">.</span><span class="n">return_dict</span><span class="p">:</span>
<span class="k">if</span> <span class="n">streaming</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_prepare_outputs</span><span class="p">(</span><span class="n">curr_outputs</span><span class="p">,</span> <span class="n">input_lengths</span><span class="p">)</span>
<span class="k">for</span> <span class="n">curr_outputs</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_prepare_outputs</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">input_lengths</span><span class="p">)</span>
<span class="k">return</span> <span class="n">outputs</span></div>
<div class="viewcode-block" id="ModelRunner.serialize_engine">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.runtime.html#tensorrt_llm.runtime.ModelRunner.serialize_engine">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">serialize_engine</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">trt</span><span class="o">.</span><span class="n">IHostMemory</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Serialize the engine.</span>
<span class="sd"> Returns:</span>
<span class="sd"> bytes: The serialized engine.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">session</span><span class="o">.</span><span class="n">runtime</span><span class="o">.</span><span class="n">_serialize_engine</span><span class="p">()</span></div>
</div>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on November 23, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/a761585">a761585</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>