TensorRT-LLMs/examples/llm_kv_cache_offloading.html
2025-11-25 03:40:39 +00:00

793 lines
49 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>KV Cache Offloading &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = 'examples/llm_kv_cache_offloading';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc4';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../_static/favicon.png"/>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Runtime Configuration Examples" href="llm_runtime.html" />
<link rel="prev" title="KV Cache Connector" href="llm_kv_cache_connector.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc4" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../index.html">
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 current active has-children"><a class="reference internal" href="llm_api_examples.html">LLM Examples</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="llm_api_examples.html" class="nav-link">LLM Examples</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">KV Cache Offloading</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="kv-cache-offloading">
<h1>KV Cache Offloading<a class="headerlink" href="#kv-cache-offloading" title="Link to this heading">#</a></h1>
<p>Source <a class="github reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/a761585d9c15b4c1249aaf65a8f90764efa83a3c/examples/llm-api/llm_kv_cache_offloading.py">NVIDIA/TensorRT-LLM</a>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="linenos"> 1</span><span class="sd">&#39;&#39;&#39;</span>
<span class="linenos"> 2</span><span class="sd">This script demonstrates the effectiveness of KV cache host offloading in TensorRT-LLM.</span>
<span class="linenos"> 3</span>
<span class="linenos"> 4</span><span class="sd">**Scenario:**</span>
<span class="linenos"> 5</span><span class="sd">The script simulates a scenario where the GPU&#39;s KV cache is severely limited,</span>
<span class="linenos"> 6</span><span class="sd">while multiple requests with recurring prompts (like system prompts) are processed.</span>
<span class="linenos"> 7</span>
<span class="linenos"> 8</span><span class="sd">1. **Constrained GPU Cache:** The GPU KV cache is configured to be very small,</span>
<span class="linenos"> 9</span><span class="sd"> only large enough to hold the state for a single request.</span>
<span class="linenos"> 10</span><span class="sd">2. **Alternating Prompts:** Four requests are sent sequentially (batch size of 1)</span>
<span class="linenos"> 11</span><span class="sd"> with two distinct prompts in an A, B, A, B pattern.</span>
<span class="linenos"> 12</span><span class="sd">3. **Cache Eviction:** Due to the small GPU cache, processing prompt B will</span>
<span class="linenos"> 13</span><span class="sd"> force the eviction of the cache generated for prompt A.</span>
<span class="linenos"> 14</span>
<span class="linenos"> 15</span><span class="sd">**Demonstration:**</span>
<span class="linenos"> 16</span>
<span class="linenos"> 17</span><span class="sd">* **Without Offloading (Default):**</span>
<span class="linenos"> 18</span><span class="sd"> - When the first prompt &#39;A&#39; is processed, its KV cache is stored on the GPU.</span>
<span class="linenos"> 19</span><span class="sd"> - When prompt &#39;B&#39; arrives, the cache manager needs space and discards the cache for &#39;A&#39;.</span>
<span class="linenos"> 20</span><span class="sd"> - When prompt &#39;A&#39; is sent again, its cache must be recomputed from scratch.</span>
<span class="linenos"> 21</span><span class="sd"> - **Expected Outcome:** The log will show `reused blocks: 0` and `cache hit rate: 0`.</span>
<span class="linenos"> 22</span>
<span class="linenos"> 23</span><span class="sd">* **With Offloading (`--enable_offloading`):**</span>
<span class="linenos"> 24</span><span class="sd"> - When prompt &#39;B&#39; arrives, the cache for &#39;A&#39; is not discarded but is instead</span>
<span class="linenos"> 25</span><span class="sd"> *offloaded* from the fast GPU VRAM to the slower (but larger) host CPU RAM.</span>
<span class="linenos"> 26</span><span class="sd"> - When prompt &#39;A&#39; is sent again, its KV cache is loaded back from host RAM</span>
<span class="linenos"> 27</span><span class="sd"> to the GPU, which is significantly faster than recomputing it.</span>
<span class="linenos"> 28</span><span class="sd"> - **Expected Outcome:** The log will show positive values for `reused blocks`</span>
<span class="linenos"> 29</span><span class="sd"> and a non-zero `cache hit rate`, confirming that the cache was successfully</span>
<span class="linenos"> 30</span><span class="sd"> reused from the host.</span>
<span class="linenos"> 31</span>
<span class="linenos"> 32</span><span class="sd">**How to Run &amp; Verify:**</span>
<span class="linenos"> 33</span>
<span class="linenos"> 34</span><span class="sd">1. **Without Offloading:**</span>
<span class="linenos"> 35</span><span class="sd"> ```bash</span>
<span class="linenos"> 36</span><span class="sd"> TLLM_LOG_LEVEL=DEBUG python llm_kv_cache_offloading.py 2&gt;&amp;1 | tee offloading_disabled.log</span>
<span class="linenos"> 37</span><span class="sd"> ```</span>
<span class="linenos"> 38</span><span class="sd"> (Check the log for zero reuse)</span>
<span class="linenos"> 39</span>
<span class="linenos"> 40</span><span class="sd">2. **With Offloading:**</span>
<span class="linenos"> 41</span><span class="sd"> ```bash</span>
<span class="linenos"> 42</span><span class="sd"> TLLM_LOG_LEVEL=DEBUG python llm_kv_cache_offloading.py --enable_offloading 2&gt;&amp;1 | tee offloading_enabled.log</span>
<span class="linenos"> 43</span><span class="sd"> ```</span>
<span class="linenos"> 44</span><span class="sd"> (Check the log for non-zero reuse)</span>
<span class="linenos"> 45</span><span class="sd">&#39;&#39;&#39;</span>
<span class="linenos"> 46</span>
<span class="linenos"> 47</span><span class="kn">import</span><span class="w"> </span><span class="nn">argparse</span>
<span class="linenos"> 48</span>
<span class="linenos"> 49</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
<span class="linenos"> 50</span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.llmapi</span><span class="w"> </span><span class="kn">import</span> <span class="n">KvCacheConfig</span>
<span class="linenos"> 51</span>
<span class="linenos"> 52</span>
<span class="linenos"> 53</span><span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">(</span><span class="n">args</span><span class="p">):</span>
<span class="linenos"> 54</span> <span class="c1"># Define two distinct prompts to simulate different requests or system prompts.</span>
<span class="linenos"> 55</span> <span class="n">prompt_a</span> <span class="o">=</span> <span class="p">(</span>
<span class="linenos"> 56</span> <span class="s2">&quot;Returns the per-iterations statistics computed since last call to this method. &quot;</span>
<span class="linenos"> 57</span> <span class="s2">&quot;Contains at most iter_stats_max_iterations iterations.&quot;</span><span class="p">)</span>
<span class="linenos"> 58</span> <span class="n">prompt_b</span> <span class="o">=</span> <span class="p">(</span><span class="s2">&quot;Use for skipping decoding step for non generation model, &quot;</span>
<span class="linenos"> 59</span> <span class="s2">&quot;and return the batch_output (such as mm_embeddings)&quot;</span><span class="p">)</span>
<span class="linenos"> 60</span>
<span class="linenos"> 61</span> <span class="c1"># Use a batch size of 1 to process requests sequentially, making the cache</span>
<span class="linenos"> 62</span> <span class="c1"># eviction and reuse cycle easy to observe.</span>
<span class="linenos"> 63</span> <span class="n">max_batch_size</span> <span class="o">=</span> <span class="mi">1</span>
<span class="linenos"> 64</span> <span class="n">max_seq_len</span> <span class="o">=</span> <span class="mi">256</span>
<span class="linenos"> 65</span>
<span class="linenos"> 66</span> <span class="c1"># --- KV Cache Configuration ---</span>
<span class="linenos"> 67</span> <span class="c1"># Set a small GPU KV cache size (in number of tokens). This is crucial for the demo,</span>
<span class="linenos"> 68</span> <span class="c1"># as it&#39;s only large enough to hold the KV cache for a single request.</span>
<span class="linenos"> 69</span> <span class="n">kv_cache_max_tokens</span> <span class="o">=</span> <span class="mi">256</span>
<span class="linenos"> 70</span> <span class="c1"># Define the size of a single cache block.</span>
<span class="linenos"> 71</span> <span class="n">kv_cache_page_size</span> <span class="o">=</span> <span class="mi">16</span>
<span class="linenos"> 72</span> <span class="c1"># Enable a 1 GB host cache if offloading is requested, otherwise disable it (size 0).</span>
<span class="linenos"> 73</span> <span class="c1"># This is the key toggle for the experiment.</span>
<span class="linenos"> 74</span> <span class="n">kv_cache_host_size</span> <span class="o">=</span> <span class="mi">1024</span><span class="o">**</span><span class="mi">3</span> <span class="k">if</span> <span class="n">args</span><span class="o">.</span><span class="n">enable_offloading</span> <span class="k">else</span> <span class="mi">0</span>
<span class="linenos"> 75</span>
<span class="linenos"> 76</span> <span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">max_tokens</span><span class="o">=</span><span class="n">max_seq_len</span><span class="p">)</span>
<span class="linenos"> 77</span>
<span class="linenos"> 78</span> <span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
<span class="linenos"> 79</span> <span class="n">model</span><span class="o">=</span><span class="s2">&quot;Qwen/Qwen3-8B&quot;</span><span class="p">,</span>
<span class="linenos"> 80</span> <span class="n">max_batch_size</span><span class="o">=</span><span class="n">max_batch_size</span><span class="p">,</span>
<span class="linenos"> 81</span> <span class="n">max_seq_len</span><span class="o">=</span><span class="n">max_seq_len</span><span class="p">,</span>
<span class="linenos"> 82</span> <span class="n">kv_cache_config</span><span class="o">=</span><span class="n">KvCacheConfig</span><span class="p">(</span>
<span class="linenos"> 83</span> <span class="n">enable_block_reuse</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="c1"># Enable reuse of cached blocks</span>
<span class="linenos"> 84</span> <span class="n">max_tokens</span><span class="o">=</span><span class="n">kv_cache_max_tokens</span><span class="p">,</span> <span class="c1"># Max tokens in GPU cache</span>
<span class="linenos"> 85</span> <span class="n">tokens_per_block</span><span class="o">=</span><span class="n">kv_cache_page_size</span><span class="p">,</span>
<span class="linenos"> 86</span> <span class="n">host_cache_size</span><span class="o">=</span><span class="n">kv_cache_host_size</span> <span class="c1"># Host cache size for offloading</span>
<span class="linenos"> 87</span> <span class="p">))</span>
<span class="linenos"> 88</span>
<span class="linenos"> 89</span> <span class="c1"># Process four requests sequentially using two distinct prompts (A, B, A, B).</span>
<span class="linenos"> 90</span> <span class="c1"># This pattern is designed to showcase the cache eviction and reuse behavior.</span>
<span class="linenos"> 91</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;--- First Round ---&quot;</span><span class="p">)</span>
<span class="linenos"> 92</span> <span class="c1"># 1. Process prompt A. Its cache is stored on the GPU.</span>
<span class="linenos"> 93</span> <span class="n">output_a</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompt_a</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos"> 94</span> <span class="nb">print</span><span class="p">(</span>
<span class="linenos"> 95</span> <span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">output_a</span><span class="o">.</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">output_a</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span>
<span class="linenos"> 96</span> <span class="p">)</span>
<span class="linenos"> 97</span> <span class="c1"># 2. Process prompt B. Its cache replaces/offloads A&#39;s cache.</span>
<span class="linenos"> 98</span> <span class="n">output_b</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompt_b</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos"> 99</span> <span class="nb">print</span><span class="p">(</span>
<span class="linenos">100</span> <span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">output_b</span><span class="o">.</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">output_b</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span>
<span class="linenos">101</span> <span class="p">)</span>
<span class="linenos">102</span>
<span class="linenos">103</span> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\n</span><span class="s2">--- Second Round ---&quot;</span><span class="p">)</span>
<span class="linenos">104</span> <span class="c1"># 3. Process prompt A again.</span>
<span class="linenos">105</span> <span class="c1"># - Without offloading: Must recompute from scratch.</span>
<span class="linenos">106</span> <span class="c1"># - With offloading: Recovers cache from host RAM.</span>
<span class="linenos">107</span> <span class="n">output_a</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompt_a</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos">108</span> <span class="nb">print</span><span class="p">(</span>
<span class="linenos">109</span> <span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">output_a</span><span class="o">.</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">output_a</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span>
<span class="linenos">110</span> <span class="p">)</span>
<span class="linenos">111</span> <span class="c1"># 4. Process prompt B again.</span>
<span class="linenos">112</span> <span class="c1"># - Without offloading: Must recompute from scratch.</span>
<span class="linenos">113</span> <span class="c1"># - With offloading: Recovers cache from host RAM.</span>
<span class="linenos">114</span> <span class="n">output_b</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompt_b</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
<span class="linenos">115</span> <span class="nb">print</span><span class="p">(</span>
<span class="linenos">116</span> <span class="sa">f</span><span class="s2">&quot;Prompt: </span><span class="si">{</span><span class="n">output_b</span><span class="o">.</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">output_b</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span><span class="si">!r}</span><span class="s2">&quot;</span>
<span class="linenos">117</span> <span class="p">)</span>
<span class="linenos">118</span>
<span class="linenos">119</span> <span class="n">llm</span><span class="o">.</span><span class="n">shutdown</span><span class="p">()</span>
<span class="linenos">120</span>
<span class="linenos">121</span>
<span class="linenos">122</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<span class="linenos">123</span> <span class="n">parser</span> <span class="o">=</span> <span class="n">argparse</span><span class="o">.</span><span class="n">ArgumentParser</span><span class="p">(</span>
<span class="linenos">124</span> <span class="n">description</span><span class="o">=</span>
<span class="linenos">125</span> <span class="s2">&quot;A script to demonstrate the effectiveness of KV cache host offloading.&quot;</span>
<span class="linenos">126</span> <span class="p">)</span>
<span class="linenos">127</span> <span class="n">parser</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s1">&#39;--enable_offloading&#39;</span><span class="p">,</span>
<span class="linenos">128</span> <span class="n">action</span><span class="o">=</span><span class="s1">&#39;store_true&#39;</span><span class="p">,</span>
<span class="linenos">129</span> <span class="n">help</span><span class="o">=</span><span class="s1">&#39;Enable host RAM for KV cache offloading.&#39;</span><span class="p">)</span>
<span class="linenos">130</span> <span class="n">args</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">parse_args</span><span class="p">()</span>
<span class="linenos">131</span> <span class="n">main</span><span class="p">(</span><span class="n">args</span><span class="p">)</span>
</pre></div>
</div>
</section>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
<a class="left-prev"
href="llm_kv_cache_connector.html"
title="previous page">
<i class="fa-solid fa-angle-left"></i>
<div class="prev-next-info">
<p class="prev-next-subtitle">previous</p>
<p class="prev-next-title">KV Cache Connector</p>
</div>
</a>
<a class="right-next"
href="llm_runtime.html"
title="next page">
<div class="prev-next-info">
<p class="prev-next-subtitle">next</p>
<p class="prev-next-title">Runtime Configuration Examples</p>
</div>
<i class="fa-solid fa-angle-right"></i>
</a>
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on November 23, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/a761585">a761585</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>