TensorRT-LLMs/examples/models/core/qwenvl/run.py
2025-10-28 09:17:26 -07:00

548 lines
20 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
from typing import List, Tuple
import tensorrt as trt
import torch
from transformers import AutoConfig, AutoTokenizer
from vit_onnx_trt import Preprocss
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm.llmapi.kv_cache_type import KVCacheType
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime import (ModelConfig, SamplingConfig, Session,
TensorInfo)
def get_engine_name(rank):
return "rank{}.engine".format(rank)
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
class QWenInfer(object):
def __init__(
self,
tokenizer_dir,
qwen_engine_dir,
log_level,
output_csv,
output_npy,
num_beams,
):
self.tokenizer_dir = tokenizer_dir
self.qwen_engine_dir = qwen_engine_dir
self.log_level = log_level
self.global_max_input_len = 2048
self.decoder = None
self.tokenizer = None
self.config = None
self.sampling_config = None
self.output_csv = output_csv
self.output_npy = output_npy
self.num_beams = num_beams
self.model_config = None
def get_model(self):
# --load the tokenizer and engine #
tokenizer = AutoTokenizer.from_pretrained(
self.tokenizer_dir,
legacy=False,
trust_remote_code=True,
)
config_path = os.path.join(self.qwen_engine_dir, "config.json")
with open(config_path, "r") as f:
config = json.load(f)
gen_config_path = os.path.join(self.tokenizer_dir,
"generation_config.json")
with open(gen_config_path, "r") as f:
gen_config = json.load(f)
top_k = gen_config["top_k"]
top_p = gen_config["top_p"]
chat_format = gen_config["chat_format"]
if chat_format == "raw":
eos_token_id = gen_config["eos_token_id"]
pad_token_id = gen_config["pad_token_id"]
elif chat_format == "chatml":
pad_token_id = eos_token_id = tokenizer.im_end_id
else:
raise Exception("unknown chat format ", chat_format)
use_gpt_attention_plugin = config["build_config"]["plugin_config"][
"gpt_attention_plugin"]
gemm_allreduce_plugin = config["build_config"]["plugin_config"][
"gemm_allreduce_plugin"]
remove_input_padding = config["build_config"]["plugin_config"][
"remove_input_padding"]
dtype = config["pretrained_config"]["dtype"]
tp_size = config["pretrained_config"]["mapping"]["tp_size"]
pp_size = config["pretrained_config"]["mapping"]["pp_size"]
world_size = tp_size * pp_size
assert (
world_size == tensorrt_llm.mpi_world_size()
), f"Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})"
num_heads = config["pretrained_config"][
"num_attention_heads"] // world_size
max_batch_size = config["build_config"]["max_batch_size"]
hidden_size = config["pretrained_config"]["hidden_size"] // world_size
vocab_size = config["pretrained_config"]["vocab_size"]
num_layers = config["pretrained_config"]["num_hidden_layers"]
num_kv_heads = config["pretrained_config"].get("num_key_value_heads",
num_heads)
if "kv_cache_type" in config["build_config"]:
kv_cache_type = KVCacheType(config["build_config"]["kv_cache_type"])
else:
kv_cache_type = KVCacheType.CONTINUOUS
tokens_per_block = config["build_config"]["plugin_config"][
"tokens_per_block"]
max_prompt_embedding_table_size = config["build_config"].get(
"max_prompt_embedding_table_size", 0)
quant_mode = QuantMode.from_quant_algo(
config["pretrained_config"]["quantization"]["quant_algo"],
config["pretrained_config"]["quantization"]["kv_cache_quant_algo"],
)
if config["pretrained_config"].get("multi_query_mode", False):
tensorrt_llm.logger.warning(
"`multi_query_mode` config is deprecated. Please rebuild the engine."
)
num_kv_heads = 1
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size=world_size,
rank=runtime_rank,
tp_size=tp_size,
pp_size=pp_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
model_config = ModelConfig(
max_batch_size=max_batch_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
gemm_allreduce_plugin=gemm_allreduce_plugin,
kv_cache_type=kv_cache_type,
tokens_per_block=tokens_per_block,
remove_input_padding=remove_input_padding,
dtype=dtype,
quant_mode=quant_mode,
max_prompt_embedding_table_size=max_prompt_embedding_table_size,
max_beam_width=self.num_beams,
)
sampling_config = SamplingConfig(
end_id=eos_token_id,
pad_id=pad_token_id,
num_beams=self.num_beams,
top_k=top_k,
top_p=top_p,
temperature=1.0,
)
engine_name = get_engine_name(runtime_rank)
serialize_path = os.path.join(self.qwen_engine_dir, engine_name)
print(f"Loading engine from {serialize_path}")
return (
model_config,
sampling_config,
runtime_mapping,
runtime_rank,
serialize_path,
tokenizer,
eos_token_id,
pad_token_id,
)
def qwen_model_init(self):
(
model_config,
sampling_config,
runtime_mapping,
runtime_rank,
serialize_path,
tokenizer,
eos_token_id,
pad_token_id,
) = self.get_model()
with open(serialize_path, "rb") as f:
engine_buffer = f.read()
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config,
engine_buffer,
runtime_mapping,
)
self.tokenizer = tokenizer
self.sampling_config = sampling_config
self.model_config = model_config
self.config, _ = AutoConfig.from_pretrained(
self.tokenizer_dir,
return_unused_kwargs=True,
trust_remote_code=True,
)
def ptuning_setup(self, prompt_table, dtype, hidden_size, tasks, input_ids):
if prompt_table is not None:
task_vocab_size = torch.tensor([prompt_table.shape[1]],
dtype=torch.int32,
device="cuda")
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
if tasks is not None:
tasks = torch.tensor([int(t) for t in tasks.split(",")],
dtype=torch.int32,
device="cuda")
assert (tasks.shape[0] == input_ids.shape[0]
), "Number of supplied tasks must match input batch size"
else:
tasks = torch.zeros([input_ids.size(0)], dtype=torch.int32).cuda()
return [prompt_table, tasks, task_vocab_size]
def make_context(
self,
query: str,
history: List[Tuple[str, str]] = None,
system: str = "You are a helpful assistant.",
max_window_size: int = 6144,
):
if history is None:
history = []
im_start, im_end = "<|im_start|>", "<|im_end|>"
im_start_tokens = [self.tokenizer.im_start_id] # 151644
im_end_tokens = [self.tokenizer.im_end_id] # [151645]
nl_tokens = self.tokenizer.encode("\n")
def _tokenize_str(role, content):
return f"{role}\n{content}", self.tokenizer.encode(
role, allowed_special=set(self.tokenizer.IMAGE_ST)
) + nl_tokens + self.tokenizer.encode(
content, allowed_special=set(self.tokenizer.IMAGE_ST))
system_text, system_tokens_part = _tokenize_str("system", system)
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
raw_text = ""
context_tokens = []
for turn_query, turn_response in reversed(history):
query_text, query_tokens_part = _tokenize_str("user", turn_query)
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
if turn_response is not None:
response_text, response_tokens_part = _tokenize_str(
"assistant", turn_response)
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
next_context_tokens = (nl_tokens + query_tokens + nl_tokens +
response_tokens)
prev_chat = f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
else:
next_context_tokens = nl_tokens + query_tokens + nl_tokens
prev_chat = f"\n{im_start}{query_text}{im_end}\n"
current_context_size = (len(system_tokens) +
len(next_context_tokens) +
len(context_tokens))
if current_context_size < max_window_size:
context_tokens = next_context_tokens + context_tokens
raw_text = prev_chat + raw_text
else:
break
context_tokens = system_tokens + context_tokens
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
context_tokens += (nl_tokens + im_start_tokens +
_tokenize_str("user", query)[1] + im_end_tokens +
nl_tokens + im_start_tokens +
self.tokenizer.encode("assistant") + nl_tokens)
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
return raw_text, context_tokens
def generate_for_qwenvl(
self,
input_tokens,
max_new_tokens: int,
prompt_table=None,
tasks=None,
task_vocab_size=None,
num_beams=1,
):
input_ids = None
input_lengths = None
input_ids = torch.as_tensor(input_tokens,
device="cuda",
dtype=torch.int32)
input_lengths = torch.tensor([input_ids.size(1)],
device="cuda",
dtype=torch.int32)
max_input_length = torch.max(input_lengths).item()
max_new_tokens = min(max_new_tokens,
self.global_max_input_len - max_input_length)
profiler.start("QWen")
run_time = 10
for _ in range(run_time):
self.decoder.setup(
batch_size=input_lengths.size(0),
max_context_length=max_input_length,
max_new_tokens=max_new_tokens,
beam_width=num_beams,
)
output_ids = self.decoder.decode(
input_ids,
input_lengths,
self.sampling_config,
prompt_table,
tasks,
task_vocab_size,
)
torch.cuda.synchronize()
profiler.stop("QWen")
Qwen_time = profiler.elapsed_time_in_sec("QWen") / run_time
return output_ids, Qwen_time
def qwen_infer(
self,
input_vit,
images_path,
input_text,
max_new_tokens,
num_beams=1,
history=None,
):
if images_path is None:
content_list = []
else:
content_list = images_path
if history is None:
history = []
content_list.append({"text": input_text})
query = self.tokenizer.from_list_format(content_list)
raw_text, context_tokens = self.make_context(query, history=history)
# context_tokens = self.tokenizer.encode(query)
input_ids = torch.tensor([context_tokens]).to("cuda")
bos_pos = torch.where(input_ids == self.config.visual["image_start_id"])
eos_pos = torch.where(
input_ids == self.config.visual["image_start_id"] + 1)
assert (bos_pos[0] == eos_pos[0]).all()
img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
vocab_size = self.config.vocab_size
fake_prompt_id = torch.arange(
vocab_size,
vocab_size + input_vit.shape[0] * input_vit.shape[1],
device="cuda",
)
fake_prompt_id = fake_prompt_id.reshape(input_vit.shape[0],
input_vit.shape[1])
for idx, (i, a, b) in enumerate(img_pos):
input_ids[i][a + 1:b] = fake_prompt_id[idx]
input_ids = input_ids.contiguous().to(torch.int32).cuda()
input_lengths = torch.tensor(input_ids.size(1),
dtype=torch.int32).cuda()
dtype = self.model_config.dtype
prompt_table, tasks, task_vocab_size = self.ptuning_setup(
input_vit, dtype, self.config.hidden_size, None, input_ids)
output_ids, Qwen_time = self.generate_for_qwenvl(
input_ids, max_new_tokens, prompt_table, tasks, task_vocab_size,
num_beams)
runtime_rank = tensorrt_llm.mpi_rank()
input_lengths = torch.tensor([input_ids.size(1)],
device="cuda",
dtype=torch.int32)
effective_output_token = 0
if runtime_rank == 0:
if self.output_csv is None and self.output_npy is None:
for b in range(input_lengths.size(0)):
inputs = input_ids[b]
if content_list is not None:
print(f'Input: "{content_list}"')
print("\n")
if self.num_beams <= 1:
outputs = output_ids[b][0, len(inputs):].tolist()
try:
effective_output_token = (effective_output_token +
outputs.index(151643))
except:
effective_output_token = 1
output_text = self.tokenizer.decode(
outputs, skip_special_tokens=True)
print(f'Output: "{output_text}"')
print("\n")
else:
for beam in range(self.num_beams):
outputs = output_ids[b][beam, len(inputs):].tolist()
output_text = self.tokenizer.decode(
outputs, skip_special_tokens=True)
print(f'Output(beam: {beam}): "{output_text}"')
logger.info(f"Input length={input_lengths[b]}")
logger.info(f"Output length={output_ids.shape}")
logger.info(f"TensorRT LLM QWen time: {Qwen_time:3f} sec ")
history.append((query, output_text))
return output_text
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--max_new_tokens", type=int, default=200)
parser.add_argument("--log_level", type=str, default="info")
parser.add_argument(
"--vit_engine_path",
type=str,
default="plan/visual_encoder/visual_encoder_fp16.plan",
)
parser.add_argument(
"--qwen_engine_dir",
type=str,
default="qwen_outputs",
)
parser.add_argument(
"--tokenizer_dir",
type=str,
default=".",
help="Directory containing the tokenizer.model.",
)
parser.add_argument("--input_text",
type=str,
default="Describe the picture")
parser.add_argument(
"--images_path",
nargs="+",
type=json.loads,
default=[{
"image": "./pics/demo.jpeg"
}],
)
parser.add_argument(
"--input_tokens",
dest="input_file",
type=str,
help=
"CSV or Numpy file containing tokenized input. Alternative to text input.",
default=None,
)
parser.add_argument(
"--output_csv",
type=str,
help="CSV file where the tokenized output is stored.",
default=None,
)
parser.add_argument(
"--output_npy",
type=str,
help="Numpy file where the tokenized output is stored.",
default=None,
)
parser.add_argument("--num_beams",
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument("--display", default=False, action='store_true')
parser.add_argument('--port', type=str, default='8006')
parser.add_argument("--local_machine", default=False, action='store_true')
return parser.parse_args()
def vit_process(image_path, vit_engine_path, stream):
img_processor = Preprocss(448)
logger.info(f"Loading engine from {vit_engine_path}")
with open(vit_engine_path, "rb") as f:
engine_buffer = f.read()
logger.info(f"Creating session from engine {vit_engine_path}")
session_vit = Session.from_serialized_engine(engine_buffer)
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
image_path_list = []
for item in image_path:
image_path_list.append(next(iter(item.values())))
images = img_processor.encode(image_path_list).to(device)
batch_size = images.size(0)
images = images.expand(batch_size, -1, -1, -1).contiguous()
visual_inputs = {"input": images.float()}
visual_output_info = session_vit.infer_shapes(
[TensorInfo("input", trt.DataType.FLOAT, images.shape)])
visual_outputs = {
t.name:
torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device="cuda")
for t in visual_output_info
}
profiler.start("ViT")
run_time = 10
for _ in range(run_time):
ok = session_vit.run(visual_inputs, visual_outputs, stream)
profiler.stop("ViT")
Vit_time = profiler.elapsed_time_in_sec("ViT") / run_time
logger.info(f"TensorRT LLM ViT latency: {Vit_time:3f} sec ")
assert ok, "Runtime execution failed for vit session"
image_embeds = visual_outputs["output"]
return image_embeds
if __name__ == "__main__":
args = parse_arguments()
stream = torch.cuda.current_stream().cuda_stream
tensorrt_llm.logger.set_level(args.log_level)
image_embeds = vit_process(args.images_path, args.vit_engine_path, stream)
qinfer = QWenInfer(
args.tokenizer_dir,
args.qwen_engine_dir,
args.log_level,
args.output_csv,
args.output_npy,
args.num_beams,
)
qinfer.qwen_model_init()
qinfer.qwen_infer(
image_embeds,
args.images_path,
args.input_text,
args.max_new_tokens,
args.num_beams,
history=[],
)