mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
166 lines
6.2 KiB
Python
166 lines
6.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
import click
|
|
|
|
import tensorrt_llm.profiler as profiler
|
|
|
|
from .. import LLM as PyTorchLLM
|
|
from .._tensorrt_engine import LLM
|
|
from ..evaluate import (GSM8K, MMLU, MMMU, CnnDailymail, GPQADiamond,
|
|
GPQAExtended, GPQAMain, JsonModeEval, LongBenchV2)
|
|
from ..llmapi import BuildConfig, KvCacheConfig
|
|
from ..llmapi.llm_utils import update_llm_args_with_extra_options
|
|
from ..logger import logger, severity_map
|
|
|
|
|
|
@click.group()
|
|
@click.option(
|
|
"--model",
|
|
required=True,
|
|
type=str,
|
|
help="model name | HF checkpoint path | TensorRT engine path",
|
|
)
|
|
@click.option("--tokenizer",
|
|
type=str,
|
|
default=None,
|
|
help="Path | Name of the tokenizer."
|
|
"Specify this value only if using TensorRT engine as model.")
|
|
@click.option(
|
|
"--backend",
|
|
type=click.Choice(["pytorch", "tensorrt"]),
|
|
default="pytorch",
|
|
help="The backend to use for evaluation. Default is pytorch backend.")
|
|
@click.option('--log_level',
|
|
type=click.Choice(severity_map.keys()),
|
|
default='info',
|
|
help="The logging level.")
|
|
@click.option("--max_beam_width",
|
|
type=int,
|
|
default=BuildConfig.model_fields["max_beam_width"].default,
|
|
help="Maximum number of beams for beam search decoding.")
|
|
@click.option("--max_batch_size",
|
|
type=int,
|
|
default=BuildConfig.model_fields["max_batch_size"].default,
|
|
help="Maximum number of requests that the engine can schedule.")
|
|
@click.option(
|
|
"--max_num_tokens",
|
|
type=int,
|
|
default=BuildConfig.model_fields["max_num_tokens"].default,
|
|
help=
|
|
"Maximum number of batched input tokens after padding is removed in each batch."
|
|
)
|
|
@click.option(
|
|
"--max_seq_len",
|
|
type=int,
|
|
default=BuildConfig.model_fields["max_seq_len"].default,
|
|
help="Maximum total length of one request, including prompt and outputs. "
|
|
"If unspecified, the value is deduced from the model config.")
|
|
@click.option("--tp_size", type=int, default=1, help='Tensor parallelism size.')
|
|
@click.option("--pp_size",
|
|
type=int,
|
|
default=1,
|
|
help='Pipeline parallelism size.')
|
|
@click.option("--ep_size",
|
|
type=int,
|
|
default=None,
|
|
help="expert parallelism size")
|
|
@click.option("--gpus_per_node",
|
|
type=int,
|
|
default=None,
|
|
help="Number of GPUs per node. Default to None, and it will be "
|
|
"detected automatically.")
|
|
@click.option("--kv_cache_free_gpu_memory_fraction",
|
|
type=float,
|
|
default=0.9,
|
|
help="Free GPU memory fraction reserved for KV Cache, "
|
|
"after allocating model weights and buffers.")
|
|
@click.option("--trust_remote_code",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Flag for HF transformers.")
|
|
@click.option("--extra_llm_api_options",
|
|
type=str,
|
|
default=None,
|
|
help="Path to a YAML file that overwrites the parameters")
|
|
@click.option("--disable_kv_cache_reuse",
|
|
is_flag=True,
|
|
default=False,
|
|
help="Flag for disabling KV cache reuse.")
|
|
@click.pass_context
|
|
def main(ctx, model: str, tokenizer: Optional[str], log_level: str,
|
|
backend: str, max_beam_width: int, max_batch_size: int,
|
|
max_num_tokens: int, max_seq_len: int, tp_size: int, pp_size: int,
|
|
ep_size: Optional[int], gpus_per_node: Optional[int],
|
|
kv_cache_free_gpu_memory_fraction: float, trust_remote_code: bool,
|
|
extra_llm_api_options: Optional[str], disable_kv_cache_reuse: bool):
|
|
logger.set_level(log_level)
|
|
build_config = BuildConfig(max_batch_size=max_batch_size,
|
|
max_num_tokens=max_num_tokens,
|
|
max_beam_width=max_beam_width,
|
|
max_seq_len=max_seq_len)
|
|
|
|
kv_cache_config = KvCacheConfig(
|
|
free_gpu_memory_fraction=kv_cache_free_gpu_memory_fraction,
|
|
enable_block_reuse=not disable_kv_cache_reuse)
|
|
|
|
llm_args = {
|
|
"model": model,
|
|
"tokenizer": tokenizer,
|
|
"tensor_parallel_size": tp_size,
|
|
"pipeline_parallel_size": pp_size,
|
|
"moe_expert_parallel_size": ep_size,
|
|
"gpus_per_node": gpus_per_node,
|
|
"trust_remote_code": trust_remote_code,
|
|
"build_config": build_config,
|
|
"kv_cache_config": kv_cache_config,
|
|
}
|
|
|
|
if extra_llm_api_options is not None:
|
|
llm_args = update_llm_args_with_extra_options(llm_args,
|
|
extra_llm_api_options)
|
|
|
|
profiler.start("trtllm init")
|
|
if backend == 'pytorch':
|
|
llm = PyTorchLLM(**llm_args)
|
|
elif backend == 'tensorrt':
|
|
llm = LLM(**llm_args)
|
|
else:
|
|
raise click.BadParameter(
|
|
f"{backend} is not a known backend, check help for available options.",
|
|
param_hint="backend")
|
|
profiler.stop("trtllm init")
|
|
elapsed_time = profiler.elapsed_time_in_sec("trtllm init")
|
|
logger.info(f"TRTLLM initialization time: {elapsed_time:.3f} seconds.")
|
|
profiler.reset("trtllm init")
|
|
|
|
# Pass llm to subcommands
|
|
ctx.obj = llm
|
|
|
|
|
|
main.add_command(CnnDailymail.command)
|
|
main.add_command(MMLU.command)
|
|
main.add_command(GSM8K.command)
|
|
main.add_command(GPQADiamond.command)
|
|
main.add_command(GPQAMain.command)
|
|
main.add_command(GPQAExtended.command)
|
|
main.add_command(JsonModeEval.command)
|
|
main.add_command(MMMU.command)
|
|
main.add_command(LongBenchV2.command)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|