TensorRT-LLMs/cpp/tensorrt_llm/pybind/bindings.cpp
Robin Kobus d3c14682f0
refactor: Remove unused buffers and bindings from sampler (#6484)
Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-08-01 00:43:03 -04:00

488 lines
30 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <pybind11/cast.h>
#include <pybind11/functional.h>
#include <pybind11/operators.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/extension.h>
#include <vector>
#include "tensorrt_llm/batch_manager/peftCacheManagerConfig.h"
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/pybind/batch_manager/algorithms.h"
#include "tensorrt_llm/pybind/batch_manager/bindings.h"
#include "tensorrt_llm/pybind/batch_manager/cacheTransceiver.h"
#include "tensorrt_llm/pybind/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/pybind/batch_manager/llmRequest.h"
#include "tensorrt_llm/pybind/executor/bindings.h"
#include "tensorrt_llm/pybind/runtime/bindings.h"
#include "tensorrt_llm/pybind/testing/modelSpecBinding.h"
#include "tensorrt_llm/pybind/userbuffers/bindings.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "tensorrt_llm/runtime/ipcNvlsMemory.h"
#include "tensorrt_llm/runtime/memoryCounters.h"
#include "tensorrt_llm/runtime/samplingConfig.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
namespace py = pybind11;
namespace tb = tensorrt_llm::batch_manager;
namespace tpb = tensorrt_llm::pybind::batch_manager;
namespace tc = tensorrt_llm::common;
namespace tr = tensorrt_llm::runtime;
namespace tle = tensorrt_llm::executor;
using SizeType32 = tr::SizeType32;
using TokenIdType = tr::TokenIdType;
template <typename T>
using OptVec = std::optional<std::vector<T>>;
#if not defined(TRTLLM_PYBIND_MODULE)
#error "TRTLLM_PYBIND_MODULE must be defined"
#endif
namespace
{
tr::SamplingConfig makeSamplingConfig(std::vector<tr::SamplingConfig> const& configs)
{
return tr::SamplingConfig(configs);
}
} // namespace
PYBIND11_MODULE(TRTLLM_PYBIND_MODULE, m)
{
m.doc() = "TensorRT-LLM Python bindings for C++ runtime";
m.attr("binding_type") = "pybind";
// Create MpiComm binding first since it's used in the executor bindings
py::classh<tensorrt_llm::mpi::MpiComm>(m, "MpiComm")
.def_static("rank",
[]()
{
auto& session = tensorrt_llm::mpi::MpiComm::session();
return session.tensorrt_llm::mpi::MpiComm::getRank();
})
.def_static("size",
[]()
{
auto& session = tensorrt_llm::mpi::MpiComm::session();
return session.tensorrt_llm::mpi::MpiComm::getSize();
})
.def_static("local_size",
[]()
{
auto& session = tensorrt_llm::mpi::MpiComm::localSession();
return session.tensorrt_llm::mpi::MpiComm::getSize();
})
.def_static("local_init", []() { tensorrt_llm::mpi::MpiComm::localSession(); })
.def_static("set_raw_mpi_session_by_fortran_handle",
[](int64_t fortran_handle) { tensorrt_llm::mpi::MpiComm::setRawSessionByFortran(fortran_handle); })
.def_static("split",
[](size_t color, size_t rank)
{
auto& world = tensorrt_llm::mpi::MpiComm::world();
tensorrt_llm::mpi::MpiComm::setSession(world.split(color, rank));
});
py::classh<tr::CudaStream>(m, "CudaStream")
.def(py::init(
[](py::object py_stream)
{
cudaStream_t stream = reinterpret_cast<cudaStream_t>(py_stream.cast<uintptr_t>());
return tr::CudaStream{stream};
}),
py::arg("stream_ptr"))
.def("get_device", &tr::CudaStream::getDevice);
// Create submodule for executor bindings.
auto mExecutor = m.def_submodule("executor", "Executor bindings");
auto mInternal = m.def_submodule("internal", "Internal submodule of TRTLLM runtime");
auto mInternalRuntime = mInternal.def_submodule("runtime", "Runtime internal bindings");
auto mInternalTesting = mInternal.def_submodule("testing", "Testing internal bindings");
auto mInternalBatchManager = mInternal.def_submodule("batch_manager", "Batch manager internal bindings");
tensorrt_llm::pybind::executor::initBindings(mExecutor);
tensorrt_llm::pybind::runtime::initBindingsEarly(mInternalRuntime);
auto buildInfo = m.def_submodule("BuildInfo");
buildInfo.attr("ENABLE_MULTI_DEVICE") = py::int_(ENABLE_MULTI_DEVICE);
py::class_<tb::PeftCacheManagerConfig>(m, "PeftCacheManagerConfig")
.def(py::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32,
SizeType32, std::optional<float>, std::optional<size_t>, std::optional<std::string>>(),
py::arg("num_host_module_layer") = 0, py::arg("num_device_module_layer") = 0,
py::arg("optimal_adapter_size") = 8, py::arg("max_adapter_size") = 64, py::arg("num_put_workers") = 1,
py::arg("num_ensure_workers") = 1, py::arg("num_copy_streams") = 1,
py::arg("max_pages_per_block_host") = 24, py::arg("max_pages_per_block_device") = 8,
py::arg("device_cache_percent") = std::nullopt, py::arg("host_cache_size") = std::nullopt,
py::arg("lora_prefetch_dir") = std::nullopt)
.def_readwrite("num_host_module_layer", &tb::PeftCacheManagerConfig::numHostModuleLayer)
.def_readwrite("num_device_module_layer", &tb::PeftCacheManagerConfig::numDeviceModuleLayer)
.def_readwrite("optimal_adapter_size", &tb::PeftCacheManagerConfig::optimalAdapterSize)
.def_readwrite("max_adapter_size", &tb::PeftCacheManagerConfig::maxAdapterSize)
.def_readwrite("num_put_workers", &tb::PeftCacheManagerConfig::numPutWorkers)
.def_readwrite("num_ensure_workers", &tb::PeftCacheManagerConfig::numEnsureWorkers)
.def_readwrite("num_copy_streams", &tb::PeftCacheManagerConfig::numCopyStreams)
.def_readwrite("max_pages_per_block_host", &tb::PeftCacheManagerConfig::maxPagesPerBlockHost)
.def_readwrite("max_pages_per_block_device", &tb::PeftCacheManagerConfig::maxPagesPerBlockDevice)
.def_readwrite("device_cache_percent", &tb::PeftCacheManagerConfig::deviceCachePercent)
.def_readwrite("host_cache_size", &tb::PeftCacheManagerConfig::hostCacheSize)
.def_readwrite("lora_prefetch_dir", &tb::PeftCacheManagerConfig::loraPrefetchDir);
py::enum_<nvinfer1::DataType>(m, "DataType")
.value("FLOAT", nvinfer1::DataType::kFLOAT)
.value("HALF", nvinfer1::DataType::kHALF)
.value("INT8", nvinfer1::DataType::kINT8)
.value("INT32", nvinfer1::DataType::kINT32)
.value("BOOL", nvinfer1::DataType::kBOOL)
.value("UINT8", nvinfer1::DataType::kUINT8)
.value("FP8", nvinfer1::DataType::kFP8)
.value("BF16", nvinfer1::DataType::kBF16)
.value("INT64", nvinfer1::DataType::kINT64)
.export_values();
py::enum_<tr::ModelConfig::ModelVariant>(m, "GptModelVariant")
.value("GPT", tr::ModelConfig::ModelVariant::kGpt)
.value("GLM", tr::ModelConfig::ModelVariant::kGlm)
.value("CHATGLM", tr::ModelConfig::ModelVariant::kChatGlm)
.value("MAMBA", tr::ModelConfig::ModelVariant::kMamba)
.value("RECURRENTGEMMA", tr::ModelConfig::ModelVariant::kRecurrentGemma);
py::enum_<tr::ModelConfig::KVCacheType>(m, "KVCacheType")
.value("CONTINUOUS", tr::ModelConfig::KVCacheType::kCONTINUOUS)
.value("PAGED", tr::ModelConfig::KVCacheType::kPAGED)
.value("DISABLED", tr::ModelConfig::KVCacheType::kDISABLED)
.def("from_string", &tr::ModelConfig::KVCacheTypeFromString);
py::enum_<tr::ModelConfig::LayerType>(m, "LayerType")
.value("ATTENTION", tr::ModelConfig::LayerType::kATTENTION)
.value("RECURRENT", tr::ModelConfig::LayerType::kRECURRENT);
py::enum_<tr::LoraModule::ModuleType>(m, "LoraModuleType")
.value("INVALID", tr::LoraModule::ModuleType::kINVALID)
.value("ATTN_QKV", tr::LoraModule::ModuleType::kATTN_QKV)
.value("ATTN_Q", tr::LoraModule::ModuleType::kATTN_Q)
.value("ATTN_K", tr::LoraModule::ModuleType::kATTN_K)
.value("ATTN_V", tr::LoraModule::ModuleType::kATTN_V)
.value("ATTN_DENSE", tr::LoraModule::ModuleType::kATTN_DENSE)
.value("MLP_H_TO_4H", tr::LoraModule::ModuleType::kMLP_H_TO_4H)
.value("MLP_4H_TO_H", tr::LoraModule::ModuleType::kMLP_4H_TO_H)
.value("MLP_GATE", tr::LoraModule::ModuleType::kMLP_GATE)
.value("CROSS_ATTN_QKV", tr::LoraModule::ModuleType::kCROSS_ATTN_QKV)
.value("CROSS_ATTN_Q", tr::LoraModule::ModuleType::kCROSS_ATTN_Q)
.value("CROSS_ATTN_K", tr::LoraModule::ModuleType::kCROSS_ATTN_K)
.value("CROSS_ATTN_V", tr::LoraModule::ModuleType::kCROSS_ATTN_V)
.value("CROSS_ATTN_DENSE", tr::LoraModule::ModuleType::kCROSS_ATTN_DENSE)
.value("MOE_H_TO_4H", tr::LoraModule::ModuleType::kMOE_H_TO_4H)
.value("MOE_4H_TO_H", tr::LoraModule::ModuleType::kMOE_4H_TO_H)
.value("MOE_GATE", tr::LoraModule::ModuleType::kMOE_GATE)
.value("MOE_ROUTER", tr::LoraModule::ModuleType::kMOE_ROUTER)
.value("MLP_ROUTER", tr::LoraModule::ModuleType::kMLP_ROUTER)
.value("MLP_GATE_UP", tr::LoraModule::ModuleType::kMLP_GATE_UP);
py::class_<tr::LoraModule>(m, "LoraModule")
.def(py::init<tr::LoraModule::ModuleType, SizeType32, SizeType32, bool, bool, SizeType32, SizeType32>(),
py::arg("module_type"), py::arg("in_dim"), py::arg("out_dim"), py::arg("in_dim_first"),
py::arg("out_dim_first"), py::arg("in_tp_split_dim"), py::arg("out_tp_split_dim"))
.def_property_readonly("module_type", &tr::LoraModule::name)
.def_property_readonly("in_dim", &tr::LoraModule::inDim)
.def_property_readonly("out_dim", &tr::LoraModule::outDim)
.def_property_readonly("in_dim_first", &tr::LoraModule::inDimFirst)
.def_property_readonly("out_dim_first", &tr::LoraModule::outDimFirst)
.def_property_readonly("in_tp_split_dim", &tr::LoraModule::inTpSplitDim)
.def_property_readonly("out_tp_split_dim", &tr::LoraModule::outTpSplitDim)
.def_static("create_lora_modules", &tr::LoraModule::createLoraModules, py::arg("lora_module_names"),
py::arg("hidden_size"), py::arg("mlp_hidden_size"), py::arg("num_attention_heads"),
py::arg("num_kv_attention_heads"), py::arg("attention_head_size"), py::arg("tp_size") = 1,
py::arg("num_experts") = 0);
py::class_<tc::QuantMode>(m, "QuantMode")
.def_static("none", &tc::QuantMode::none)
.def_static("int4_weights", &tc::QuantMode::int4Weights)
.def_static("int8_weights", &tc::QuantMode::int8Weights)
.def_static("activations", &tc::QuantMode::activations)
.def_static("per_channel_scaling", &tc::QuantMode::perChannelScaling)
.def_static("per_token_scaling", &tc::QuantMode::perTokenScaling)
.def_static("per_group_scaling", &tc::QuantMode::perGroupScaling)
.def_static("int8_kv_cache", &tc::QuantMode::int8KvCache)
.def_static("fp8_kv_cache", &tc::QuantMode::fp8KvCache)
.def_static("fp8_qdq", &tc::QuantMode::fp8Qdq)
.def_property_readonly("value", &tc::QuantMode::value)
.def("is_set", &tc::QuantMode::isSet, py::arg("mode"))
.def_property_readonly("has_int4_weights", &tc::QuantMode::hasInt4Weights)
.def_property_readonly("has_int8_weights", &tc::QuantMode::hasInt8Weights)
.def_property_readonly("has_activations", &tc::QuantMode::hasActivations)
.def_property_readonly("has_per_channel_scaling", &tc::QuantMode::hasPerChannelScaling)
.def_property_readonly("has_per_token_scaling", &tc::QuantMode::hasPerTokenScaling)
.def_property_readonly("has_per_group_scaling", &tc::QuantMode::hasPerGroupScaling)
.def_property_readonly("has_static_activation_scaling", &tc::QuantMode::hasStaticActivationScaling)
.def_property_readonly("has_int8_kv_cache", &tc::QuantMode::hasInt8KvCache)
.def_property_readonly("has_fp8_kv_cache", &tc::QuantMode::hasFp8KvCache)
.def_property_readonly("has_fp8_qdq", &tc::QuantMode::hasFp8Qdq)
.def_property_readonly("has_nvfp4", &tc::QuantMode::hasNvfp4)
.def_property_readonly("has_w4a8_mxfp4_fp8", &tc::QuantMode::hasW4a8Mxfp4Fp8)
.def_property_readonly("has_kv_cache_quant", &tc::QuantMode::hasKvCacheQuant)
.def_static("from_description", &tc::QuantMode::fromDescription, py::arg("quantize_weights"),
py::arg("quantize_activations"), py::arg("per_token"), py::arg("per_channel"), py::arg("per_group"),
py::arg("use_int4_weights"), py::arg("use_int8_kv_cache"), py::arg("use_fp8_kv_kache"),
py::arg("use_fp8_qdq"), py::arg("use_fp8_rowwise"), py::arg("use_w4a8_qserve"), py::arg("use_nvfp4"),
py::arg("use_fp8_block_scales"), py::arg("use_w4a8_mxfp4_fp8"))
.def_static("use_smooth_quant", &tc::QuantMode::useSmoothQuant, py::arg("per_token") = false,
py::arg("per_channel") = false)
.def_static("use_weight_only", &tc::QuantMode::useWeightOnly, py::arg("use_int4_weights") = false,
py::arg("per_group") = false)
.def_static("from_quant_algo", &tc::QuantMode::fromQuantAlgo, py::arg("quant_algo") = py::none(),
py::arg("kv_cache_quant_algo") = py::none())
.def(py::self + py::self)
.def(py::self += py::self)
.def(py::self - py::self)
.def(py::self -= py::self)
.def(py::self == py::self)
.def(py::self != py::self);
py::class_<tr::ModelConfig>(m, "ModelConfig")
.def(py::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, SizeType32, nvinfer1::DataType>(),
py::arg("vocab_size"), py::arg("num_layers"), py::arg("num_attention_layers"), py::arg("num_rnn_layers"),
py::arg("num_heads"), py::arg("hidden_size"), py::arg("data_type"))
.def_property_readonly("vocab_size", &tr::ModelConfig::getVocabSize)
.def("vocab_size_padded", &tr::ModelConfig::getVocabSizePadded, py::arg("world_size"))
.def("num_layers", &tr::ModelConfig::getNbLayers, py::arg("pipeline_parallelism") = 1,
py::arg("pipeline_parallelism_rank") = 0)
.def("num_attention_layers", &tr::ModelConfig::getNbAttentionLayers, py::arg("pipeline_parallelism") = 1,
py::arg("pipeline_parallelism_rank") = 0)
.def("num_rnn_layers", &tr::ModelConfig::getNbRnnLayers, py::arg("pipeline_parallelism") = 1,
py::arg("pipeline_parallelism_rank") = 0)
.def("num_kv_heads", &tr::ModelConfig::getNbKvHeads, py::arg("layer_idx"))
.def("set_num_kv_heads", &tr::ModelConfig::setNbKvHeads, py::arg("num_kv_heads"))
.def_property_readonly("num_heads", &tr::ModelConfig::getNbHeads)
.def_property_readonly("hidden_size", &tr::ModelConfig::getHiddenSize)
.def_property_readonly("size_per_head", &tr::ModelConfig::getSizePerHead)
.def_property_readonly("data_type", &tr::ModelConfig::getDataType)
.def_property_readonly("speculative_decoding_mode", &tr::ModelConfig::getSpeculativeDecodingMode)
.def_property("head_size", &tr::ModelConfig::getSizePerHead, &tr::ModelConfig::setSizePerHead)
.def_property(
"num_kv_heads_per_layer", &tr::ModelConfig::getNumKvHeadsPerLayer, &tr::ModelConfig::setNumKvHeadsPerLayer)
.def_property("use_gpt_attention_plugin",
py::overload_cast<>(&tr::ModelConfig::useGptAttentionPlugin, py::const_),
py::overload_cast<bool>(&tr::ModelConfig::useGptAttentionPlugin))
.def_property("use_packed_input", py::overload_cast<>(&tr::ModelConfig::usePackedInput, py::const_),
py::overload_cast<bool>(&tr::ModelConfig::usePackedInput))
.def_property("kv_cache_type", py::overload_cast<>(&tr::ModelConfig::getKVCacheType, py::const_),
py::overload_cast<tr::ModelConfig::KVCacheType>(&tr::ModelConfig::setKVCacheType))
.def_property("tokens_per_block", &tr::ModelConfig::getTokensPerBlock, &tr::ModelConfig::setTokensPerBlock)
.def_property("quant_mode", &tr::ModelConfig::getQuantMode, &tr::ModelConfig::setQuantMode)
.def_property_readonly("supports_inflight_batching", &tr::ModelConfig::supportsInflightBatching)
.def_property("max_batch_size", &tr::ModelConfig::getMaxBatchSize, &tr::ModelConfig::setMaxBatchSize)
.def_property("max_beam_width", &tr::ModelConfig::getMaxBeamWidth, &tr::ModelConfig::setMaxBeamWidth)
.def_property("max_input_len", &tr::ModelConfig::getMaxInputLen, &tr::ModelConfig::setMaxInputLen)
.def_property("max_seq_len", &tr::ModelConfig::getMaxSequenceLen, &tr::ModelConfig::setMaxSequenceLen)
.def_property("max_num_tokens", &tr::ModelConfig::getMaxNumTokens, &tr::ModelConfig::setMaxNumTokens)
.def_property("max_prompt_embedding_table_size", &tr::ModelConfig::getMaxPromptEmbeddingTableSize,
&tr::ModelConfig::setMaxPromptEmbeddingTableSize)
.def_property_readonly("use_prompt_tuning", &tr::ModelConfig::usePromptTuning)
.def_property_readonly("use_mrope", &tr::ModelConfig::useMrope)
.def_property("use_lora_plugin", py::overload_cast<>(&tr::ModelConfig::useLoraPlugin, py::const_),
py::overload_cast<bool>(&tr::ModelConfig::useLoraPlugin))
.def_property("layer_types", &tr::ModelConfig::getLayerTypes, &tr::ModelConfig::setLayerTypes)
.def_property("compute_context_logits", py::overload_cast<>(&tr::ModelConfig::computeContextLogits, py::const_),
py::overload_cast<bool>(&tr::ModelConfig::computeContextLogits))
.def_property("compute_generation_logits",
py::overload_cast<>(&tr::ModelConfig::computeGenerationLogits, py::const_),
py::overload_cast<bool>(&tr::ModelConfig::computeGenerationLogits))
.def_property("model_variant", &tr::ModelConfig::getModelVariant, &tr::ModelConfig::setModelVariant)
.def_property(
"use_cross_attention", &tr::ModelConfig::useCrossAttention, &tr::ModelConfig::setUseCrossAttention)
.def_property("lora_modules", &tr::ModelConfig::getLoraModules, &tr::ModelConfig::setLoraModules)
.def_property("max_lora_rank", &tr::ModelConfig::getMaxLoraRank, &tr::ModelConfig::setMaxLoraRank)
.def_property("mlp_hidden_size", &tr::ModelConfig::getMlpHiddenSize, &tr::ModelConfig::setMlpHiddenSize)
.def_property("size_per_head", &tr::ModelConfig::getSizePerHead, &tr::ModelConfig::setSizePerHead);
py::class_<tr::WorldConfig>(m, "WorldConfig")
.def(py::init<SizeType32, SizeType32, SizeType32, SizeType32, SizeType32,
std::optional<std::vector<SizeType32>> const&, bool>(),
py::arg("tensor_parallelism") = 1, py::arg("pipeline_parallelism") = 1, py::arg("context_parallelism") = 1,
py::arg("rank") = 0, py::arg("gpus_per_node") = tr::WorldConfig::kDefaultGpusPerNode,
py::arg("device_ids") = py::none(), py::arg("enable_attention_dp") = false)
.def_property_readonly("size", &tr::WorldConfig::getSize)
.def_property_readonly("tensor_parallelism", &tr::WorldConfig::getTensorParallelism)
.def_property_readonly("pipeline_parallelism", &tr::WorldConfig::getPipelineParallelism)
.def_property_readonly("context_parallelism", &tr::WorldConfig::getContextParallelism)
.def_property_readonly("is_tensor_parallel", &tr::WorldConfig::isTensorParallel)
.def_property_readonly("is_pipeline_parallel", &tr::WorldConfig::isPipelineParallel)
.def_property_readonly("is_context_parallel", &tr::WorldConfig::isContextParallel)
.def_property_readonly("rank", &tr::WorldConfig::getRank)
.def_property_readonly("local_rank", &tr::WorldConfig::getLocalRank)
.def_property_readonly("node_rank", &tr::WorldConfig::getNodeRank)
.def_property_readonly("gpus_per_node", &tr::WorldConfig::getGpusPerNode)
.def_property_readonly("gpus_per_group", &tr::WorldConfig::getGpusPerGroup)
.def_property_readonly("device", &tr::WorldConfig::getDevice)
.def_property_readonly("pipeline_parallel_rank", &tr::WorldConfig::getPipelineParallelRank)
.def_property_readonly("tensor_parallel_rank", &tr::WorldConfig::getTensorParallelRank)
.def_property_readonly("context_parallel_rank", &tr::WorldConfig::getContextParallelRank)
.def_property_readonly("enable_attention_dp", &tr::WorldConfig::enableAttentionDP)
.def_static("mpi",
py::overload_cast<SizeType32, std::optional<SizeType32>, std::optional<SizeType32>,
std::optional<SizeType32>, std::optional<std::vector<SizeType32>> const&, bool>(&tr::WorldConfig::mpi),
py::arg("gpus_per_node") = tr::WorldConfig::kDefaultGpusPerNode, py::arg("tensor_parallelism") = py::none(),
py::arg("pipeline_parallelism") = py::none(), py::arg("context_parallelism") = py::none(),
py::arg("device_ids") = py::none(), py::arg("enable_attention_dp") = false);
auto SamplingConfigGetState = [](tr::SamplingConfig const& config) -> py::tuple
{
return py::make_tuple(config.beamWidth, config.temperature, config.minLength, config.repetitionPenalty,
config.presencePenalty, config.frequencyPenalty, config.topK, config.topP, config.randomSeed,
config.topPDecay, config.topPMin, config.topPResetIds, config.beamSearchDiversityRate, config.lengthPenalty,
config.earlyStopping, config.noRepeatNgramSize, config.numReturnSequences, config.minP,
config.beamWidthArray);
};
auto SamplingConfigSetState = [](py::tuple t) -> tr::SamplingConfig
{
if (t.size() != 19)
{
throw std::runtime_error("Invalid SamplingConfig state!");
}
tr::SamplingConfig config;
config.beamWidth = t[0].cast<SizeType32>();
config.temperature = t[1].cast<OptVec<float>>();
config.minLength = t[2].cast<OptVec<SizeType32>>();
config.repetitionPenalty = t[3].cast<OptVec<float>>();
config.presencePenalty = t[4].cast<OptVec<float>>();
config.frequencyPenalty = t[5].cast<OptVec<float>>();
config.topK = t[6].cast<OptVec<SizeType32>>();
config.topP = t[7].cast<OptVec<float>>();
config.randomSeed = t[8].cast<OptVec<uint64_t>>();
config.topPDecay = t[9].cast<OptVec<float>>();
config.topPMin = t[10].cast<OptVec<float>>();
config.topPResetIds = t[11].cast<OptVec<TokenIdType>>();
config.beamSearchDiversityRate = t[12].cast<OptVec<float>>();
config.lengthPenalty = t[13].cast<OptVec<float>>();
config.earlyStopping = t[14].cast<OptVec<SizeType32>>();
config.noRepeatNgramSize = t[15].cast<OptVec<SizeType32>>();
config.numReturnSequences = t[16].cast<SizeType32>();
config.minP = t[17].cast<OptVec<float>>();
config.beamWidthArray = t[18].cast<OptVec<std::vector<SizeType32>>>();
return config;
};
py::classh<tr::SamplingConfig>(m, "SamplingConfig")
.def(py::init<SizeType32>(), py::arg("beam_width") = 1)
.def(py::init<tle::SamplingConfig, std::optional<tle::ExternalDraftTokensConfig>>(),
py::arg("executor_sample_config"), py::arg("external_draft_tokens_config") = std::nullopt)
.def_readwrite("beam_width", &tr::SamplingConfig::beamWidth)
.def_readwrite("temperature", &tr::SamplingConfig::temperature)
.def_readwrite("min_length", &tr::SamplingConfig::minLength)
.def_readwrite("repetition_penalty", &tr::SamplingConfig::repetitionPenalty)
.def_readwrite("presence_penalty", &tr::SamplingConfig::presencePenalty)
.def_readwrite("frequency_penalty", &tr::SamplingConfig::frequencyPenalty)
.def_readwrite("top_k", &tr::SamplingConfig::topK)
.def_readwrite("top_p", &tr::SamplingConfig::topP)
.def_readwrite("random_seed", &tr::SamplingConfig::randomSeed)
.def_readwrite("top_p_decay", &tr::SamplingConfig::topPDecay)
.def_readwrite("top_p_min", &tr::SamplingConfig::topPMin)
.def_readwrite("top_p_reset_ids", &tr::SamplingConfig::topPResetIds)
.def_readwrite("beam_search_diversity_rate", &tr::SamplingConfig::beamSearchDiversityRate)
.def_readwrite("length_penalty", &tr::SamplingConfig::lengthPenalty)
.def_readwrite("early_stopping", &tr::SamplingConfig::earlyStopping)
.def_readwrite("no_repeat_ngram_size", &tr::SamplingConfig::noRepeatNgramSize)
.def_readwrite("num_return_sequences", &tr::SamplingConfig::numReturnSequences)
.def_readwrite("min_p", &tr::SamplingConfig::minP)
.def_readwrite("beam_width_array", &tr::SamplingConfig::beamWidthArray)
.def_readwrite("normalize_log_probs", &tr::SamplingConfig::normalizeLogProbs)
.def(py::pickle(SamplingConfigGetState, SamplingConfigSetState))
.def("__eq__", &tr::SamplingConfig::operator==);
m.def("make_sampling_config", &makeSamplingConfig, py::arg("configs"));
py::class_<tr::GptJsonConfig>(m, "GptJsonConfig")
.def(py::init<std::string, std::string, std::string, SizeType32, SizeType32, SizeType32, SizeType32,
tr::ModelConfig, std::optional<tr::RuntimeDefaults>>(),
py::arg("name"), py::arg("version"), py::arg("precision"), py::arg("tensor_parallelism"),
py::arg("pipeline_parallelism"), py::arg("context_parallelism"), py::arg("gpus_per_node"),
py::arg("model_config"), py::arg("runtime_defaults") = py::none())
.def_static("parse", py::overload_cast<std::string const&>(&tr::GptJsonConfig::parse), py::arg("json"))
.def_static(
"parse_file", py::overload_cast<std::filesystem::path const&>(&tr::GptJsonConfig::parse), py::arg("path"))
.def_property_readonly("model_config", &tr::GptJsonConfig::getModelConfig)
.def_property_readonly("name", &tr::GptJsonConfig::getName)
.def_property_readonly("version", &tr::GptJsonConfig::getVersion)
.def_property_readonly("precision", &tr::GptJsonConfig::getPrecision)
.def_property_readonly("tensor_parallelism", &tr::GptJsonConfig::getTensorParallelism)
.def_property_readonly("pipeline_parallelism", &tr::GptJsonConfig::getPipelineParallelism)
.def_property_readonly("context_parallelism", &tr::GptJsonConfig::getContextParallelism)
.def_property_readonly("gpus_per_node", &tr::GptJsonConfig::getGpusPerNode)
.def_property_readonly("world_size", &tr::GptJsonConfig::getWorldSize)
.def_property_readonly("runtime_defaults", &tr::GptJsonConfig::getRuntimeDefaults)
.def("engine_filename",
py::overload_cast<tr::WorldConfig const&, std::string const&>(
&tr::GptJsonConfig::engineFilename, py::const_),
py::arg("world_config"), py::arg("model"))
.def("engine_filename",
py::overload_cast<tr::WorldConfig const&>(&tr::GptJsonConfig::engineFilename, py::const_),
py::arg("world_config"));
py::enum_<tb::LlmRequestState>(m, "LlmRequestState")
.value("UNKNOWN", tb::LlmRequestState::kUNKNOWN)
.value("ENCODER_INIT", tb::LlmRequestState::kENCODER_INIT)
.value("CONTEXT_INIT", tb::LlmRequestState::kCONTEXT_INIT)
.value("GENERATION_IN_PROGRESS", tb::LlmRequestState::kGENERATION_IN_PROGRESS)
.value("GENERATION_TO_COMPLETE", tb::LlmRequestState::kGENERATION_TO_COMPLETE)
.value("GENERATION_COMPLETE", tb::LlmRequestState::kGENERATION_COMPLETE)
.value("DISAGG_GENERATION_INIT", tb::LlmRequestState::kDISAGG_GENERATION_INIT)
.value("DISAGG_CONTEXT_TRANS_IN_PROGRESS", tb::LlmRequestState::kDISAGG_CONTEXT_TRANS_IN_PROGRESS)
.value("DISAGG_CONTEXT_COMPLETE", tb::LlmRequestState::kDISAGG_CONTEXT_COMPLETE)
.value("DISAGG_GENERATION_TRANS_IN_PROGRESS", tb::LlmRequestState::kDISAGG_GENERATION_TRANS_IN_PROGRESS)
.value("DISAGG_GENERATION_TRANS_COMPLETE", tb::LlmRequestState::kDISAGG_GENERATION_TRANS_COMPLETE)
.value("DISAGG_CONTEXT_INIT_AND_TRANS", tb::LlmRequestState::kDISAGG_CONTEXT_INIT_AND_TRANS);
py::class_<tr::MemoryCounters>(m, "MemoryCounters")
.def_static("instance", &tr::MemoryCounters::getInstance, py::return_value_policy::reference)
.def_property_readonly("gpu", &tr::MemoryCounters::getGpu)
.def_property_readonly("cpu", &tr::MemoryCounters::getCpu)
.def_property_readonly("pinned", &tr::MemoryCounters::getPinned)
.def_property_readonly("uvm", &tr::MemoryCounters::getUVM);
tensorrt_llm::pybind::runtime::initBindings(mInternalRuntime);
tensorrt_llm::pybind::testing::initBindings(mInternalTesting);
tpb::initBindings(mInternalBatchManager);
tb::kv_cache_manager::KVCacheManagerBindings::initBindings(mInternalBatchManager);
tb::BasePeftCacheManagerBindings::initBindings(mInternalBatchManager);
tb::CacheTransceiverBindings::initBindings(mInternalBatchManager);
auto mInternalAlgorithms = mInternal.def_submodule("algorithms", "Algorithms internal bindings");
tpb::algorithms::initBindings(mInternalAlgorithms);
auto mUserbuffers = mInternal.def_submodule("userbuffers", "User buffers internal bindings");
tensorrt_llm::kernels::userbuffers::UserBufferBindings::initBindings(mUserbuffers);
// NVLS allocators
py::class_<tr::IpcNvlsHandle>(m, "IpcNvlsHandle")
.def(py::init<>())
.def_readwrite("uc_ptr", &tr::IpcNvlsHandle::uc_ptr)
.def_readwrite("mc_ptr", &tr::IpcNvlsHandle::mc_ptr)
.def_readwrite("size", &tr::IpcNvlsHandle::size)
.def("get_ipc_ptrs",
[](tr::IpcNvlsHandle& self) { return reinterpret_cast<uintptr_t>(self.ipc_uc_ptrs.data()); });
m.def("ipc_nvls_allocate", &tr::ipcNvlsAllocate, py::return_value_policy::reference);
m.def("ipc_nvls_free", &tr::ipcNvlsFree);
m.def("ipc_nvls_supported", &tr::ipcNvlsSupported);
}