TensorRT-LLMs/cpp/tensorrt_llm/plugins/weightOnlyGroupwiseQuantMatmulPlugin/weightOnlyGroupwiseQuantMatmulPlugin.h
2024-07-30 21:25:01 +08:00

176 lines
6.2 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/kernels/cutlass_kernels/fpA_intB_gemm/fpA_intB_gemm.h"
#include "tensorrt_llm/kernels/preQuantScaleKernel.h"
#include "tensorrt_llm/kernels/weightOnlyBatchedGemv//kernelLauncher.h"
#include "tensorrt_llm/plugins/common/gemmPluginProfiler.h"
#include "tensorrt_llm/plugins/common/plugin.h"
#include "tensorrt_llm/plugins/weightOnlyQuantMatmulPlugin/weightOnlyQuantMatmulPlugin.h"
#include <cutlass/numeric_types.h>
#include <cassert>
#include <cuda_runtime.h>
#include <memory>
#include <set>
#include <string>
#include <vector>
// The blank line here is to avoid clang-format -sort-includes option reordering these two cutlass header files and
// breaking dependencies
#include "cutlass/integer_subbyte.h"
namespace tensorrt_llm::plugins
{
using WeightOnlyGemmRunner = tensorrt_llm::kernels::cutlass_kernels::CutlassFpAIntBGemmRunnerInterface;
using WeightOnlyGemmRunnerPtr = std::shared_ptr<WeightOnlyGemmRunner>;
class WeightOnlyGroupwiseQuantGemmPluginProfiler
: public GemmPluginProfiler<tensorrt_llm::cutlass_extensions::CutlassGemmConfig, WeightOnlyGemmRunnerPtr,
GemmIdCore, GemmIdCoreHash>
{
public:
using Config = tensorrt_llm::cutlass_extensions::CutlassGemmConfig;
void setQuantAlgo(int quantAlgo)
{
mQuantAlgo = quantAlgo;
}
void setGroupSize(int groupSize)
{
mGroupSize = groupSize;
}
protected:
void runTactic(int m, int n, int k, Config const& tactic, char* workspace, cudaStream_t const& stream) override;
void computeTmpSize(size_t maxM, size_t n, size_t k) override;
std::vector<Config> getTactics(int m, int n, int k) const override;
private:
int mQuantAlgo;
int mGroupSize;
};
class WeightOnlyGroupwiseQuantMatmulPlugin : public BasePlugin
{
public:
using PluginProfilerPtr = std::shared_ptr<WeightOnlyGroupwiseQuantGemmPluginProfiler>;
WeightOnlyGroupwiseQuantMatmulPlugin() = delete;
WeightOnlyGroupwiseQuantMatmulPlugin(
nvinfer1::DataType type, int quant_algo, int group_size, PluginProfilerPtr const& profiler);
WeightOnlyGroupwiseQuantMatmulPlugin(void const* data, size_t length, PluginProfilerPtr const& profiler);
~WeightOnlyGroupwiseQuantMatmulPlugin() override = default;
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* clone() const noexcept override;
nvinfer1::DimsExprs getOutputDimensions(int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs,
nvinfer1::IExprBuilder& exprBuilder) noexcept override;
bool supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept override;
void configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept override;
size_t getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept override;
int enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept override;
// IPluginV2 Methods
char const* getPluginType() const noexcept override;
char const* getPluginVersion() const noexcept override;
int getNbOutputs() const noexcept override;
int initialize() noexcept override;
void terminate() noexcept override;
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
void destroy() noexcept override;
private:
// group_size: 64, 128
void init(nvinfer1::DataType type, int quant_algo, int group_size);
void configGemm();
private:
const std::string mLayerName;
WeightOnlyGemmRunnerPtr m_weightOnlyGroupwiseGemmRunner;
size_t m_workspaceMaxSize;
nvinfer1::DataType mType;
bool mCudaKernelEnabled;
tensorrt_llm::kernels::weight_only::KernelType mCudaKernelType;
int mArch;
// When M is smaller than this value, we trigger a fast path
// I.e. a tailored kernel instead of cutlass.
static constexpr int SMALL_M_FAST_PATH = 5;
int mQuantAlgo;
int mGroupSize;
int mPreQuantScaleInputIdx;
int mWeightInputIdx;
int mScalesInputIdx;
int mZerosInputIdx;
int mBiasesInputIdx;
int mAlphaInputIdx;
GemmDims mDims{};
GemmIdCore mGemmId{};
PluginProfilerPtr mPluginProfiler;
};
class WeightOnlyGroupwiseQuantMatmulPluginCreator : public BaseCreator
{
public:
WeightOnlyGroupwiseQuantMatmulPluginCreator();
char const* getPluginName() const noexcept override;
char const* getPluginVersion() const noexcept override;
nvinfer1::PluginFieldCollection const* getFieldNames() noexcept override;
nvinfer1::IPluginV2* createPlugin(char const* name, nvinfer1::PluginFieldCollection const* fc) noexcept override;
nvinfer1::IPluginV2* deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept override;
private:
GemmPluginProfilerManager<WeightOnlyGroupwiseQuantGemmPluginProfiler> gemmPluginProfileManager;
static nvinfer1::PluginFieldCollection mFC;
static std::vector<nvinfer1::PluginField> mPluginAttributes;
};
} // namespace tensorrt_llm::plugins