mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
144 lines
5.3 KiB
C++
144 lines
5.3 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/generationConfig.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/modelConfig.h"
|
|
#include "tensorrt_llm/runtime/promptTuningParams.h"
|
|
#include "tensorrt_llm/runtime/rnnStateBuffers.h"
|
|
#include "tensorrt_llm/runtime/transformerBuffers.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::batch_manager::kv_cache_manager
|
|
{
|
|
class KVCacheManager;
|
|
}
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
class TllmRuntime;
|
|
|
|
class RuntimeBuffers
|
|
{
|
|
protected:
|
|
using TensorPtr = ITensor::SharedPtr;
|
|
using KvCacheManager = batch_manager::kv_cache_manager::KVCacheManager;
|
|
|
|
public:
|
|
using TensorMap = StringPtrMap<ITensor>;
|
|
|
|
public:
|
|
GenerationConfig generationConfig{};
|
|
std::array<TensorMap, 2> inputBuffers{};
|
|
std::array<TensorMap, 2> outputBuffers{};
|
|
|
|
// general
|
|
TensorPtr contextLengthsHost;
|
|
TensorPtr contextLengthsDevice;
|
|
|
|
// engine
|
|
TensorPtr logits;
|
|
TensorPtr sequenceLengths; // with attention plugin
|
|
TensorPtr lastTokenIds;
|
|
TensorPtr requestTypes; // Host tensor, with attention plugin for transformer-based model or for RNN based-model
|
|
TensorPtr allGenerationLogits; // pre-allocate a buffer to save all generation logits, device tensor
|
|
TensorPtr originalLogitsPtr; // Record the initially created buffer address.
|
|
// `logits` will point to new buffer (i.e. `allGenerationLogits`) for each iteration to
|
|
// avoid overwrite during gather context/generation logits.
|
|
// `originalLogitsPtr` could reset the `logits` point to the initially buffer when
|
|
// microBatch call `buffer.reshape()`. This could avoid next microBatch's `logits`
|
|
// still point to `allGenerationLogits` and bring overwrite conflict.
|
|
|
|
// References to tmp buffers
|
|
TensorPtr newTokens;
|
|
TensorPtr outputIds;
|
|
TensorPtr outputLengths;
|
|
|
|
// beam search (shared between engine and decoder)
|
|
TensorPtr cacheIndirectionDecoderInput;
|
|
TensorPtr cacheIndirectionDecoderOutput;
|
|
|
|
// decoder
|
|
TensorPtr nbFinished;
|
|
|
|
// Log probs
|
|
TensorPtr cumLogProbs;
|
|
TensorPtr logProbs;
|
|
|
|
// pipeline parallelism
|
|
TensorPtr hiddenStates;
|
|
|
|
// Transformer model buffer
|
|
std::optional<TransformerBuffers> transformerBuffers;
|
|
|
|
// Prompt tuning
|
|
PromptTuningParams promptTuningParams;
|
|
TensorPtr promptTuningTasksHost; // Tensor to hold tasks on host
|
|
|
|
// RNN model buffer
|
|
std::optional<RnnStateBuffers> rnnStateBuffers;
|
|
|
|
// generation logit pointer list
|
|
std::shared_ptr<std::vector<TensorPtr>> generationLogitsFragments;
|
|
TensorPtr
|
|
cacheGenerationFragmentPointerDevice; // device pointer array, used in merge generation logits fragments kernel
|
|
TensorPtr
|
|
cacheGenerationFragmentPointerHost; // host pointer array, used in merge generation logits fragments kernel
|
|
|
|
bool allocated{false};
|
|
|
|
public:
|
|
void clear();
|
|
void clearTensorMaps();
|
|
|
|
void create(TllmRuntime const& runtime, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void initFromInput(ITensor const& inputIds, TensorPtr const& inputLengths, bool inputPacked, SizeType32 beamWidth,
|
|
SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength,
|
|
BufferManager& manager);
|
|
|
|
//! \brief Reshape buffers based on current GenerationConfig
|
|
void reshape(ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void reset(BufferManager& manager);
|
|
|
|
std::vector<RuntimeBuffers> split(
|
|
SizeType32 contextBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void postContextStep(std::vector<RuntimeBuffers> const& contextBuffers, BufferManager& manager,
|
|
ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void prepareContextStep(TensorPtr const& inputIds, TokenIdType padId, BufferManager& manager,
|
|
KvCacheManager const* kvCacheManager, SizeType32 firstBatchSlotIdx, ModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig);
|
|
TensorPtr prepareNextStep(SizeType32 step, BufferManager& manager, KvCacheManager* kvCacheManager,
|
|
SizeType32 firstBatchSlotIdx, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void getRuntimeBuffers(TensorMap& inputBuffers, TensorMap& outputBuffers, SizeType32 const step,
|
|
TensorPtr const& inputIds, TensorPtr const& commPtrs, ModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig) const;
|
|
|
|
void gatherLastTokenLogits(BufferManager& manager, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
};
|
|
|
|
} // namespace tensorrt_llm::runtime
|