mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Marks101 <markus.schnoes@gmx.de> Co-authored-by: lkm2835 <lkm2835@gmail.com>
412 lines
16 KiB
Python
412 lines
16 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
import safetensors
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, Blip2ForConditionalGeneration
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import pad_vocab_size
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument(
|
|
'--model_type',
|
|
type=str,
|
|
default='opt',
|
|
choices=['opt', 'blip2'],
|
|
help=
|
|
'Multimodal type when this script is used for multimodal conversion.')
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=0,
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
|
)
|
|
parser.add_argument(
|
|
'--use_embedding_sharing',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
|
|
'Note: the flag might not take effect when the criteria are not met.')
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def split(v, tp_size, idx, dim=0):
|
|
if tp_size == 1:
|
|
return v
|
|
if len(v.shape) == 1:
|
|
return torch.chunk(v, tp_size)[idx].contiguous()
|
|
else:
|
|
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
|
|
|
|
|
|
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV matrix according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
|
|
return split_v.contiguous()
|
|
|
|
|
|
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV bias according to tensor parallelism
|
|
"""
|
|
v = v.reshape(3, n_hidden)
|
|
split_v = split(v, tensor_parallel, rank, dim=1)
|
|
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
|
|
return split_v.contiguous()
|
|
|
|
|
|
def split_matrix_tp(v, tensor_parallel, rank, dim):
|
|
return split(v, tensor_parallel, rank, dim=dim)
|
|
|
|
|
|
def split_embedding(
|
|
param: torch.Tensor,
|
|
tp_size: int,
|
|
tp_rank: int,
|
|
use_parallel_embedding: bool = False,
|
|
sharding_dim: int = 0,
|
|
) -> torch.Tensor:
|
|
if param is None:
|
|
return None
|
|
if not use_parallel_embedding:
|
|
return param
|
|
|
|
vocab_size, hidden_size = param.size()
|
|
if sharding_dim == 0:
|
|
if vocab_size % tp_size != 0:
|
|
vocab_size_padded = pad_vocab_size(vocab_size, tp_size)
|
|
pad_width = vocab_size_padded - vocab_size
|
|
param = torch.nn.functional.pad(param, (0, 0, 0, pad_width),
|
|
value=0)
|
|
else:
|
|
assert hidden_size % tp_size == 0
|
|
return split(param, tp_size, tp_rank, dim=sharding_dim)
|
|
|
|
|
|
def get_weight(config, prefix, dtype):
|
|
return config[prefix + '.weight'].to(dtype).detach()
|
|
|
|
|
|
def get_bias(config, prefix, dtype):
|
|
return config[prefix + '.bias'].to(dtype).detach()
|
|
|
|
|
|
def get_weight_and_bias(config, prefix, dtype):
|
|
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
|
|
|
|
|
|
def get_tllm_linear_weight(weight,
|
|
prefix,
|
|
bias=None,
|
|
use_weight_only=False,
|
|
plugin_weight_only_quant_type=torch.int8):
|
|
results = {}
|
|
if use_weight_only:
|
|
v = weight.t().contiguous()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v, plugin_weight_only_quant_type)
|
|
results[prefix + 'weight'] = processed_torch_weights
|
|
results[prefix + 'per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
results[prefix + 'weight'] = weight.contiguous()
|
|
|
|
if bias is not None:
|
|
results[prefix + 'bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def convert_hf_opt(hf_model,
|
|
rank=0,
|
|
tensor_parallel=1,
|
|
dtype='float32',
|
|
use_parallel_embedding=False,
|
|
sharding_dim=0,
|
|
share_embedding_table=False,
|
|
use_weight_only=False,
|
|
plugin_weight_only_quant_type=torch.int8):
|
|
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
model_params = dict(hf_model.named_parameters())
|
|
dtype = getattr(torch, dtype)
|
|
do_layer_norm_before = hf_model.config.do_layer_norm_before
|
|
num_attention_heads = hf_model.config.num_attention_heads
|
|
hidden_size = hf_model.config.hidden_size
|
|
|
|
for l in range(hf_model.config.num_hidden_layers):
|
|
prefix = f'model.decoder.layers.{l}.'
|
|
tllm_prex = f'transformer.layers.{l}.'
|
|
|
|
q_weight, q_bias = get_weight_and_bias(model_params,
|
|
prefix + 'self_attn.q_proj',
|
|
dtype)
|
|
k_weight, k_bias = get_weight_and_bias(model_params,
|
|
prefix + 'self_attn.k_proj',
|
|
dtype)
|
|
v_weight, v_bias = get_weight_and_bias(model_params,
|
|
prefix + 'self_attn.v_proj',
|
|
dtype)
|
|
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
|
|
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
|
|
tensor_parallel, rank)
|
|
qkv_bias = torch.cat([q_bias, k_bias, v_bias], dim=0)
|
|
bias = split_qkv_bias_tp(qkv_bias, num_attention_heads, hidden_size,
|
|
tensor_parallel, rank)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.', bias,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
|
|
model_params, prefix + 'self_attn.out_proj', dtype)
|
|
split_v = split_matrix_tp(attn_dense_weight,
|
|
tensor_parallel,
|
|
rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
|
|
attn_dense_bias, use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
|
|
model_params, prefix + 'fc1', dtype)
|
|
split_v = split_matrix_tp(mlp_fc_weight, tensor_parallel, rank, dim=0)
|
|
bias = split_matrix_tp(mlp_fc_bias, tensor_parallel, rank, dim=0)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', bias,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
|
|
model_params, prefix + 'fc2', dtype)
|
|
split_v = split_matrix_tp(mlp_proj_weight, tensor_parallel, rank, dim=1)
|
|
weights.update(
|
|
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
|
|
mlp_proj_bias, use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
# Layer norms do not use tensor parallelism
|
|
input_ln_weight, input_ln_bias = get_weight_and_bias(
|
|
model_params, prefix + 'self_attn_layer_norm', dtype)
|
|
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
|
|
weights[tllm_prex + 'input_layernorm.bias'] = input_ln_bias
|
|
|
|
post_ln_weight, post_ln_bias = get_weight_and_bias(
|
|
model_params, prefix + 'final_layer_norm', dtype)
|
|
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
|
|
weights[tllm_prex + 'post_layernorm.bias'] = post_ln_bias
|
|
|
|
embed_w = get_weight(model_params, 'model.decoder.embed_tokens', dtype)
|
|
if 'model.decoder.project_in.weight' in model_params.keys():
|
|
project_in = get_weight(model_params, 'model.decoder.project_in', dtype)
|
|
project_out = get_weight(model_params, 'model.decoder.project_out',
|
|
dtype)
|
|
lm_head_w = torch.matmul(embed_w.float(), project_out.float()).to(dtype)
|
|
embed_w = torch.matmul(embed_w.float(),
|
|
project_in.t().float()).to(dtype)
|
|
else:
|
|
lm_head_w = embed_w.clone()
|
|
|
|
if not share_embedding_table:
|
|
weights['lm_head.weight'] = split_matrix_tp(lm_head_w,
|
|
tensor_parallel,
|
|
rank,
|
|
dim=0)
|
|
|
|
weights['transformer.vocab_embedding.weight'] = split_embedding(
|
|
embed_w,
|
|
tp_size=tensor_parallel,
|
|
tp_rank=rank,
|
|
use_parallel_embedding=use_parallel_embedding,
|
|
sharding_dim=sharding_dim)
|
|
|
|
embed_p = get_weight(model_params, 'model.decoder.embed_positions', dtype)
|
|
weights['transformer.position_embedding.weight'] = split_embedding(
|
|
embed_p[2:, :],
|
|
tp_size=tensor_parallel,
|
|
tp_rank=rank,
|
|
use_parallel_embedding=use_parallel_embedding,
|
|
sharding_dim=sharding_dim)
|
|
|
|
if do_layer_norm_before:
|
|
ln_f_w, ln_f_b = get_weight_and_bias(model_params,
|
|
'model.decoder.final_layer_norm',
|
|
dtype)
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
weights['transformer.ln_f.bias'] = ln_f_b
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# TODO(qijun): Currently, the convert script depends on a torch op:
|
|
# torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix,
|
|
# which is included in tensorrt_llm Python package. Otherwise, the convert
|
|
# script does not need to import tensorrt_llm. Will remove it after reimplementing
|
|
# the op with PyTorch.
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
world_size = args.tp_size * args.pp_size
|
|
assert args.pp_size == 1, "Pipeline parallelism is not supported."
|
|
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
if args.model_type == 'opt':
|
|
hf_model = AutoModelForCausalLM.from_pretrained(args.model_dir,
|
|
torch_dtype="auto")
|
|
elif args.model_type == 'blip2':
|
|
hf_model = Blip2ForConditionalGeneration.from_pretrained(
|
|
args.model_dir, torch_dtype="auto").language_model
|
|
|
|
hf_config = hf_model.config
|
|
if hf_config.hidden_size != hf_config.word_embed_proj_dim:
|
|
args.use_embedding_sharing = False
|
|
args.use_parallel_embedding = False
|
|
|
|
quant_algo = None
|
|
plugin_weight_only_quant_type = None
|
|
if args.use_weight_only and args.weight_only_precision == 'int8':
|
|
plugin_weight_only_quant_type = torch.int8
|
|
quant_algo = QuantAlgo.W8A16
|
|
elif args.use_weight_only and args.weight_only_precision == 'int4':
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
quant_algo = QuantAlgo.W4A16
|
|
|
|
config = {
|
|
'architecture': hf_config.architectures[0],
|
|
'dtype': args.dtype,
|
|
'num_hidden_layers': hf_config.num_hidden_layers,
|
|
'num_attention_heads': hf_config.num_attention_heads,
|
|
'hidden_size': hf_config.hidden_size,
|
|
'vocab_size': hf_config.vocab_size,
|
|
'position_embedding_type': 'learned_absolute',
|
|
'max_position_embeddings': hf_config.max_position_embeddings,
|
|
'hidden_act': hf_config.activation_function,
|
|
'quantization': {
|
|
'quant_algo': quant_algo
|
|
},
|
|
'mapping': {
|
|
'world_size': world_size,
|
|
'tp_size': args.tp_size,
|
|
'pp_size': args.pp_size,
|
|
},
|
|
'use_parallel_embedding': args.use_parallel_embedding,
|
|
'embedding_sharding_dim': args.embedding_sharding_dim,
|
|
'share_embedding_table': args.use_embedding_sharing,
|
|
'do_layer_norm_before': hf_config.do_layer_norm_before,
|
|
}
|
|
|
|
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
|
|
def covert_and_save(rank):
|
|
weights = convert_hf_opt(
|
|
hf_model,
|
|
rank,
|
|
world_size,
|
|
dtype=args.dtype,
|
|
use_weight_only=args.use_weight_only,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
|
use_parallel_embedding=args.use_parallel_embedding,
|
|
sharding_dim=args.embedding_sharding_dim,
|
|
share_embedding_table=args.use_embedding_sharing)
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
|
|
|
if args.workers == 1:
|
|
for rank in range(world_size):
|
|
covert_and_save(rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=args.workers) as p:
|
|
futures = [
|
|
p.submit(covert_and_save, rank) for rank in range(world_size)
|
|
]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|