TensorRT-LLMs/cpp/tensorrt_llm/plugins/mixtureOfExperts/mixtureOfExpertsPlugin.h
Kaiyu Xie a75618df24
Update TensorRT-LLM (#667)
* Update TensorRT-LLM

---------

Co-authored-by: 0xymoro <jerrymeng100@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-15 22:14:51 +08:00

330 lines
11 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TRT_MIXTURE_OF_EXPERTS_PLUGIN_H
#define TRT_MIXTURE_OF_EXPERTS_PLUGIN_H
#include "NvInferPlugin.h"
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.h"
#include "tensorrt_llm/plugins/common/plugin.h"
#include <cassert>
#include <mpi.h>
#include <set>
#include <string>
#include <vector>
namespace tensorrt_llm::plugins
{
class MixtureOfExpertsGemmProfiler;
using MixtureOfExpertsPluginProfilerPtr = std::shared_ptr<MixtureOfExpertsGemmProfiler>;
struct GemmIDMoe
{
int num_experts{};
int moe_k{};
int hidden{};
int inter{};
tensorrt_llm::ActivationType actfn{};
nvinfer1::DataType dtype{};
nvinfer1::DataType wdtype{};
tensorrt_llm::common::QuantMode quant_mode;
tensorrt_llm::kernels::MOEParallelismMode parallelism_mode{};
bool operator==(const GemmIDMoe& id) const
{
return id.num_experts == num_experts && id.moe_k == moe_k && id.hidden == hidden && id.inter == inter
&& id.actfn == actfn && id.dtype == dtype && id.wdtype == wdtype && id.quant_mode == quant_mode
&& id.parallelism_mode == parallelism_mode;
}
friend std::ostream& operator<<(std::ostream& out, const GemmIDMoe& id)
{
out << "experts, k, hidden, inter, actfn, dtype, weight type, parallelism mode=" << id.num_experts << ","
<< id.moe_k << "," << id.hidden << "," << id.inter << "," << static_cast<int>(id.actfn) << ","
<< static_cast<int>(id.dtype) << "," << static_cast<int>(id.wdtype) << "," << id.quant_mode.value() << ","
<< static_cast<int>(id.parallelism_mode);
return out;
}
};
// Hash of GemmIDMoe
struct GemmIDMoeHash
{
std::size_t operator()(const GemmIDMoe& id) const
{
size_t hash = std::hash<int>{}(id.num_experts);
hash ^= std::hash<int>{}(id.moe_k);
hash ^= std::hash<int>{}(id.hidden);
hash ^= std::hash<int>{}(id.inter);
hash ^= std::hash<int>{}(static_cast<int>(id.actfn));
hash ^= std::hash<int>{}(static_cast<int>(id.dtype));
hash ^= std::hash<int>{}(static_cast<int>(id.wdtype));
hash ^= std::hash<int>{}(static_cast<int>(id.quant_mode.value()));
hash ^= std::hash<int>{}(static_cast<int>(id.parallelism_mode));
return hash;
}
};
class MixtureOfExpertsPlugin : public nvinfer1::IPluginV2DynamicExt
{
public:
using MOEParallelismMode = tensorrt_llm::kernels::MOEParallelismMode;
using MOEExpertScaleNormalizationMode = tensorrt_llm::kernels::MOEExpertScaleNormalizationMode;
MixtureOfExpertsPlugin() = delete;
MixtureOfExpertsPlugin(int number_of_experts, int top_k, int expert_hidden_size, int expert_inter_size,
tensorrt_llm::ActivationType activation_type, nvinfer1::DataType type, nvinfer1::DataType weight_type,
tensorrt_llm::common::QuantMode quant_mode, bool use_finished, bool use_bias, int tp_size, int tp_rank,
MOEParallelismMode parallelism_mode, MOEExpertScaleNormalizationMode normalization_mode,
MixtureOfExpertsPluginProfilerPtr plugin_profiler_ptr);
MixtureOfExpertsPlugin(const void* data, size_t length, MixtureOfExpertsPluginProfilerPtr plugin_profiler_ptr);
MixtureOfExpertsPlugin(const MixtureOfExpertsPlugin&);
void init();
~MixtureOfExpertsPlugin() override = default;
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* clone() const noexcept override;
nvinfer1::DimsExprs getOutputDimensions(int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
nvinfer1::IExprBuilder& exprBuilder) noexcept override;
bool supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) noexcept override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept override;
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const noexcept override;
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(
int index, const nvinfer1::DataType* inputTypes, int nbInputs) const noexcept override;
// IPluginV2 Methods
const char* getPluginType() const noexcept override;
const char* getPluginVersion() const noexcept override;
int getNbOutputs() const noexcept override
{
return 1;
}
int initialize() noexcept override;
void terminate() noexcept override;
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
void destroy() noexcept override;
void setPluginNamespace(const char* pluginNamespace) noexcept override;
const char* getPluginNamespace() const noexcept override;
private:
friend class MixtureOfExpertsGemmProfiler;
std::unique_ptr<kernels::CutlassMoeFCRunnerInterface> mMOERunner{};
int mNumExperts{};
int mK{};
int mExpertHiddenSize{};
int mExpertInterSize{};
tensorrt_llm::ActivationType mActivationType;
nvinfer1::DataType mType{};
nvinfer1::DataType mWeightType{};
tensorrt_llm::common::QuantMode mQuantMode;
bool mUseFinished{};
bool mUseBias{};
int mTPSize{};
int mTPRank{};
MOEParallelismMode mParallelismMode{};
MOEExpertScaleNormalizationMode mNormalizationMode{};
GemmDims mDims{};
// The below are not serialised
GemmIDMoe mGemmId{};
MixtureOfExpertsPluginProfilerPtr mPluginProfiler;
const std::string mLayerName{};
std::string mNamespace{};
struct WorkspaceInfo
{
void* workspace{};
void* scale_probs{};
void* fc2_output{};
void* src_to_dest_map{};
void* selected_experts{};
size_t size{};
};
int getNumTokens(const nvinfer1::PluginTensorDesc* input_tensor) const;
WorkspaceInfo setupWorkspace(void* base_ptr, int num_tokens) const;
kernels::MOEParallelismConfig getParallelismConfig() const;
using IndexType = std::int32_t;
// Inputs
constexpr static IndexType getInputTensorIndex()
{
return 0;
}
constexpr static IndexType getRoutingTensorIndex()
{
return getInputTensorIndex() + 1;
}
constexpr static IndexType getExpertWeights1Index()
{
return getRoutingTensorIndex() + 1;
}
constexpr static IndexType getExpertWeights2Index()
{
return getExpertWeights1Index() + 1;
}
// Conditional inputs, we only allocate a new index if actually used
bool hasBias() const
{
return mUseBias;
}
bool hasFinishedTensor() const
{
return mUseFinished;
}
bool hasExpertQuantScales() const
{
return mQuantMode.hasInt4Weights() || mQuantMode.hasInt8Weights();
}
IndexType getExpertBias1Index() const
{
return getExpertWeights2Index() + hasBias();
}
IndexType getExpertBias2Index() const
{
return getExpertBias1Index() + hasBias();
}
IndexType getFinishedTensorIndex() const
{
return getExpertBias2Index() + hasFinishedTensor();
}
IndexType getExpertQuantScale1Index() const
{
return getFinishedTensorIndex() + hasExpertQuantScales();
}
IndexType getExpertQuantScale2Index() const
{
return getExpertQuantScale1Index() + hasExpertQuantScales();
}
IndexType getNbInputs() const
{
return getExpertQuantScale2Index() + 1;
}
// Outputs
constexpr static IndexType getOutputTensorIndex()
{
return 0;
}
/**
* Get the index of the expert shape tuple that represents the inner dimension
*/
int getGemmShapeInnerDimIndex() const
{
// In weight only mode the shape is transposed
return hasExpertQuantScales() ? 1 : 2;
}
/**
* Get the index of the expert shape tuple that represents the outer dimension
*/
int getGemmShapeOuterDimIndex() const
{
// In weight only mode the shape is transposed
return hasExpertQuantScales() ? 2 : 1;
}
/**
* Get quantization dimension scaling factor
*/
int getWeightPackedElements() const
{
return mQuantMode.hasInt4Weights() ? 2 : 1;
}
};
class MixtureOfExpertsGemmProfiler
: public tensorrt_llm::plugins::GemmPluginProfiler<tensorrt_llm::cutlass_extensions::CutlassGemmConfig,
MixtureOfExpertsPlugin*, GemmIDMoe, GemmIDMoeHash>
{
public:
MixtureOfExpertsGemmProfiler()
{
// NOTE: Do not access mPlugin here, since we are called from the constructor before all fields are init
}
protected:
using Config = tensorrt_llm::cutlass_extensions::CutlassGemmConfig;
void runTactic(int m, int n, int k, const Config& tactic, char* workspace, const cudaStream_t& stream) override;
void computeTmpSize(int maxM, int n, int k) override;
std::vector<Config> getTactics(int m, int n, int k) const override;
void initTmpData(int maxM, int n, int k, char* workspace, size_t size, cudaStream_t stream) override;
std::vector<size_t> getProfilerWorkspaces(int maxM);
};
class MixtureOfExpertsPluginCreator : public nvinfer1::IPluginCreator
{
public:
MixtureOfExpertsPluginCreator();
const char* getPluginName() const noexcept override;
const char* getPluginVersion() const noexcept override;
const nvinfer1::PluginFieldCollection* getFieldNames() noexcept override;
nvinfer1::IPluginV2* createPlugin(const char* name, const nvinfer1::PluginFieldCollection* fc) noexcept override;
nvinfer1::IPluginV2* deserializePlugin(
const char* name, const void* serialData, size_t serialLength) noexcept override;
void setPluginNamespace(const char* pluginNamespace) noexcept override;
const char* getPluginNamespace() const noexcept override;
private:
GemmPluginProfilerManager<MixtureOfExpertsGemmProfiler> moePluginProfiler;
static nvinfer1::PluginFieldCollection mFC;
static std::vector<nvinfer1::PluginField> mPluginAttributes;
std::string mNamespace;
};
} // namespace tensorrt_llm::plugins
#endif // TRT_MIXTURE_OF_EXPERTS_PLUGIN_H