TensorRT-LLMs/cpp/tests/resources/scripts/generate_expected_llama_output.py
Kaiyu Xie f7eca56161
Update TensorRT-LLM (#613)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
Co-authored-by: zhang-ge-hao <842720660@qq.com>
2023-12-08 17:49:24 +08:00

85 lines
3.0 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
from pathlib import Path
import run
def generate_output(engine: str,
num_beams: int,
output_name: str,
tp_size: int = 1,
pp_size: int = 1,
max_output_len: int = 8):
model = 'llama-7b-hf'
resources_dir = Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
hf_dir = models_dir / model
tp_pp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-gpu/'
engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_dir
data_dir = resources_dir / 'data'
input_file = data_dir / 'input_tokens.npy'
model_data_dir = data_dir / model
if num_beams <= 1:
output_dir = model_data_dir / 'sampling'
else:
output_dir = model_data_dir / ('beam_search_' + str(num_beams))
output_name += '_tp' + str(tp_size) + '_pp' + str(pp_size)
args = run.parse_arguments([
'--engine_dir',
str(engine_dir), '--input_file',
str(input_file), '--tokenizer_dir',
str(hf_dir), '--output_npy',
str(output_dir / (output_name + '.npy')), '--output_csv',
str(output_dir / (output_name + '.csv')), '--max_output_len',
str(max_output_len), '--num_beams',
str(num_beams), '--use_py_session'
])
run.main(args)
def generate_outputs(num_beams, only_multi_gpu=False):
tp_pp_sizes = [(1, 1)] if not only_multi_gpu else [(4, 1), (2, 2), (1, 4)]
for tp_size, pp_size in tp_pp_sizes:
print(
f'Generating outputs for Llama FP16 with TP={tp_size} and PP={pp_size}'
)
generate_output(engine='fp16-plugin-packed-paged',
num_beams=num_beams,
tp_size=tp_size,
pp_size=pp_size,
output_name='output_tokens_fp16_plugin_packed_paged')
if __name__ == '__main__':
parser = _arg.ArgumentParser()
parser.add_argument(
"--only_multi_gpu",
action="store_true",
help="Generate data with Pipeline and Tensor Parallelism")
args = parser.parse_args()
generate_outputs(num_beams=1, only_multi_gpu=args.only_multi_gpu)
generate_outputs(num_beams=2, only_multi_gpu=args.only_multi_gpu)
print("Done")