TensorRT-LLMs/tensorrt_llm/layers/mlp.py
Kaiyu Xie a75618df24
Update TensorRT-LLM (#667)
* Update TensorRT-LLM

---------

Co-authored-by: 0xymoro <jerrymeng100@gmail.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-15 22:14:51 +08:00

302 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from .._utils import trt_dtype_to_np
from ..functional import ACT2FN, concat
from ..module import Module
from ..quantization import QuantMode
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear
from .lora import Lora, LoraRuntimeParams
class MLP(Module):
def __init__(self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
instance_id: int = 0):
super().__init__()
if hidden_act not in ACT2FN:
raise ValueError(
'unsupported activation function: {}'.format(hidden_act))
fc_output_size = 2 * ffn_hidden_size if hidden_act == 'swiglu' else ffn_hidden_size
self.use_fp8_qdq = quant_mode.has_fp8_qdq()
if self.use_fp8_qdq:
self.fc = FP8Linear(hidden_size,
fc_output_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.proj = FP8RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
instance_id=instance_id)
else:
self.fc = ColumnLinear(hidden_size,
fc_output_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.proj = RowLinear(ffn_hidden_size,
hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
instance_id=instance_id)
self.hidden_act = hidden_act
self.dtype = dtype
self.bias = bias
def forward(self, hidden_states, workspace=None, lora_layer_params=None):
mlp_fc_lora_params = None
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
inter = self.fc(hidden_states, mlp_fc_lora_params)
inter = ACT2FN[self.hidden_act](inter)
output = self.proj(inter,
workspace,
lora_runtime_params=mlp_proj_lora_params)
return output
class GatedMLP(MLP):
def __init__(self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
instance_id: int = 0):
self.use_fp8_qdq = quant_mode.has_fp8_qdq()
super().__init__(hidden_size,
ffn_hidden_size,
hidden_act,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode,
instance_id=instance_id)
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.hidden_act = hidden_act
self.bias = bias
self.dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.quant_mode = quant_mode
self.instance_id = instance_id
if self.use_fp8_qdq:
self.gate = FP8Linear(hidden_size,
ffn_hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
else:
self.gate = ColumnLinear(hidden_size,
ffn_hidden_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
def forward(self, hidden_states, workspace=None, lora_layer_params=None):
mlp_fc_lora_params = None
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = None
if lora_layer_params is not None:
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
mlp_proj_lora_params = None
if lora_layer_params is not None:
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_4h_to_h")
inter = self.fc(hidden_states, mlp_fc_lora_params)
inter = ACT2FN[self.hidden_act](inter)
gate = self.gate(hidden_states, mlp_gate_lora_params)
intermediate = inter * gate
output = self.proj(intermediate,
workspace,
lora_runtime_params=mlp_proj_lora_params)
return output
class FusedGatedMLP(GatedMLP):
def __init__(self,
hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
tp_group=None,
tp_size=1,
quant_mode=QuantMode(0),
instance_id: int = 0):
super().__init__(hidden_size,
ffn_hidden_size,
hidden_act,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode,
instance_id=instance_id)
self.mlp_in_lora = Lora(
in_hidden_size=hidden_size,
out_hidden_sizes=[
ffn_hidden_size // tp_size, ffn_hidden_size // tp_size
],
max_low_rank=min(hidden_size, ffn_hidden_size // tp_size),
)
def forward(self, hidden_states, workspace=None, lora_layer_params=None):
# Combine the following pattern
#
# SiLU(FC(x)) + Gate(x)
#
# into:
#
# SwiGLU(FusedFC(x))
#
# Upside is we don't need to modify 4 different weight loading paths just to concat weights
_np_dtype = trt_dtype_to_np(self.dtype)
concat_weight = np.concatenate(
[self.gate.weight.raw_value, self.fc.weight.raw_value],
axis=0).astype(_np_dtype)
if self.bias:
concat_bias = np.concatenate(
[self.gate.bias.raw_value, self.fc.bias.raw_value],
axis=0).astype(_np_dtype)
if self.use_fp8_qdq:
gate_weights_scaling_factor = self.gate.weights_scaling_factor.raw_value
fc_weights_scaling_factor = self.fc.weights_scaling_factor.raw_value
fc_activation_scaling_factor = self.fc.activation_scaling_factor.raw_value
gate_activation_scaling_factor = self.gate.activation_scaling_factor.raw_value
assert fc_activation_scaling_factor == gate_activation_scaling_factor, "Activation scales should be identical"
# Remove dangling TRT-LLM parameter references after the graph rewrite.
for param, _ in list(self.gate.named_parameters()):
self.gate._parameters.pop(param)
self.gate = None
if self.use_fp8_qdq:
self.fc = FP8Linear(self.hidden_size,
self.ffn_hidden_size * 2,
bias=self.bias,
dtype=self.dtype,
tp_group=self.tp_group,
tp_size=self.tp_size,
gather_output=False)
else:
self.fc = ColumnLinear(self.hidden_size,
self.ffn_hidden_size * 2,
bias=self.bias,
dtype=self.dtype,
tp_group=self.tp_group,
tp_size=self.tp_size,
gather_output=False)
self.fc.weight.value = concat_weight
if self.use_fp8_qdq:
self.fc.activation_scaling_factor.value = fc_activation_scaling_factor
# TODO: need to align with quantization toolkit; preferably put a constraint to equalize
# fc/gate weight scaling factor to allow horizontal fusion without accuracy loss
self.fc.weights_scaling_factor.value = max(
gate_weights_scaling_factor, fc_weights_scaling_factor)
if self.bias:
self.fc.bias.value = concat_bias
inter = self.fc(hidden_states)
if lora_layer_params is not None:
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_h_to_4h")
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_gate")
if mlp_fc_lora_params is not None and mlp_gate_lora_params is not None:
mlp_in_lora_params = LoraRuntimeParams(
lora_ranks=[
mlp_fc_lora_params.lora_ranks[0],
mlp_gate_lora_params.lora_ranks[0]
],
lora_weights_pointers=[
mlp_fc_lora_params.lora_weights_pointers[0],
mlp_gate_lora_params.lora_weights_pointers[0]
],
host_request_types=mlp_fc_lora_params.host_request_types,
host_context_lengths=mlp_fc_lora_params.
host_context_lengths,
max_context_length=mlp_fc_lora_params.max_context_length)
mlp_fc_lora, mlp_gate_lora = self.mlp_in_lora(
hidden_states, mlp_in_lora_params)
mlp_in_result = concat([mlp_gate_lora, mlp_fc_lora], dim=2)
inter = inter + mlp_in_result
if self.hidden_act == 'silu':
inter = ACT2FN['swiglu'](inter)
else:
raise NotImplementedError(
f"Activation {self.hidden_act} not yet implemented for FusedGatedMLP"
)
output = self.proj(inter, workspace)
return output