mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: 0xymoro <jerrymeng100@gmail.com> Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
332 lines
14 KiB
Python
332 lines
14 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from dataclasses import dataclass
|
|
from enum import IntEnum
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import tensorrt as trt
|
|
|
|
from tensorrt_llm._utils import str_dtype_to_trt
|
|
|
|
from .._common import default_trtnet
|
|
from ..functional import _create_tensor, allreduce, cast, split
|
|
from ..module import Module
|
|
from ..parameter import Parameter
|
|
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
|
|
from ..quantization import QuantMode
|
|
from .linear import RowLinear
|
|
|
|
activation_str_to_int_map = {
|
|
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_gemm_kernels.h
|
|
"gelu": 0,
|
|
"gelu_new": 0,
|
|
"relu": 1,
|
|
"silu": 2,
|
|
"swiglu": 3,
|
|
"geglu": 4,
|
|
"identity": 5,
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class MoeConfig:
|
|
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.h
|
|
class ParallelismMode(IntEnum):
|
|
NONE = 0
|
|
EXPERT_PARALLEL = 1
|
|
TENSOR_PARALLEL = 2
|
|
|
|
class ExpertScaleNormalizationMode(IntEnum):
|
|
NONE = 0
|
|
RENORMALIZE = 1
|
|
|
|
num_experts: int = 0
|
|
top_k: int = 0
|
|
tp_mode: ParallelismMode = ParallelismMode.TENSOR_PARALLEL
|
|
normalization_mode: ExpertScaleNormalizationMode = ExpertScaleNormalizationMode.RENORMALIZE
|
|
|
|
def validate(self) -> "MoeConfig":
|
|
if (self.num_experts == 0) != (self.top_k == 0):
|
|
raise ValueError(
|
|
"Both or neither MoeConfig's num_experts and top_k must be set to 0"
|
|
)
|
|
return self
|
|
|
|
def has_moe(self) -> bool:
|
|
return self.num_experts > 1
|
|
|
|
|
|
def is_gated_activation(activation_str):
|
|
return activation_str in ("swiglu", "geglu")
|
|
|
|
|
|
def _moe_plugin(moe_config,
|
|
hidden_states,
|
|
routing,
|
|
finished,
|
|
expert_weight_1,
|
|
expert_weight_2,
|
|
expert_bias_1,
|
|
expert_bias_2,
|
|
expert_scale_1,
|
|
expert_scale_2,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
act_fn,
|
|
dtype,
|
|
weight_dtype,
|
|
quant_mode=QuantMode(0),
|
|
tp_size=1,
|
|
tp_rank=0):
|
|
if isinstance(dtype, str):
|
|
dtype = str_dtype_to_trt(dtype)
|
|
|
|
# Create the plugin with our required state
|
|
num_experts = moe_config.num_experts
|
|
# We pass the full number of experts (not divided by tp_size) even for EP mode
|
|
p_num_experts = trt.PluginField("number_of_experts",
|
|
np.array(num_experts, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_top_k = trt.PluginField("top_k", np.array(moe_config.top_k,
|
|
dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_expert_hidden_size = trt.PluginField(
|
|
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_expert_inter_size = trt.PluginField(
|
|
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_activation_type = trt.PluginField(
|
|
"activation_type",
|
|
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
|
|
dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_weight_type_id = trt.PluginField(
|
|
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_quant_mode = trt.PluginField("quant_mode",
|
|
np.array([int(quant_mode)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_use_finished = trt.PluginField(
|
|
"use_finished", np.array([int(finished is not None)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_use_bias = trt.PluginField(
|
|
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_parallelism_mode = trt.PluginField(
|
|
"parallelism_mode", np.array(moe_config.tp_mode, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
p_normalization_mode = trt.PluginField(
|
|
"normalization_mode",
|
|
np.array(moe_config.normalization_mode, dtype=np.int32),
|
|
trt.PluginFieldType.INT32)
|
|
|
|
pfc = trt.PluginFieldCollection([
|
|
p_num_experts, p_top_k, p_expert_hidden_size, p_expert_inter_size,
|
|
p_activation_type, p_type_id, p_weight_type_id, p_quant_mode,
|
|
p_use_finished, p_use_bias, p_tp_size, p_tp_rank, p_parallelism_mode,
|
|
p_normalization_mode
|
|
])
|
|
|
|
# Create the plugin with our constant inputs to the constructor
|
|
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
|
|
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
|
|
assert plugin_creator is not None
|
|
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
|
|
|
|
# Instantiate the plugin with our specific inputs
|
|
plugin_inputs = [
|
|
hidden_states, routing, expert_weight_1.value, expert_weight_2.value
|
|
]
|
|
|
|
if expert_bias_1:
|
|
assert expert_bias_2
|
|
plugin_inputs += [expert_bias_1.value, expert_bias_2.value]
|
|
|
|
if finished is not None:
|
|
plugin_inputs += [finished]
|
|
|
|
# Add conditional inputs
|
|
if expert_scale_1 is not None:
|
|
assert expert_scale_2
|
|
plugin_inputs += [expert_scale_1.value, expert_scale_2.value]
|
|
|
|
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
|
|
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
|
|
for ii in range(layer.num_inputs):
|
|
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
|
|
layer.get_input(ii).set_dynamic_range(-127, 127)
|
|
output = _create_tensor(layer.get_output(0), layer)
|
|
return output
|
|
|
|
|
|
class MixtureOfExperts(Module):
|
|
|
|
def __init__(self,
|
|
moe_config: MoeConfig,
|
|
hidden_size: int,
|
|
ffn_hidden_size: int,
|
|
hidden_act: str,
|
|
bias: bool = True,
|
|
dtype=None,
|
|
tp_group: List[int] = None,
|
|
tp_size: int = 1,
|
|
tp_rank: int = 0,
|
|
instance_id: int = 0,
|
|
quant_mode=QuantMode(0)):
|
|
super().__init__()
|
|
|
|
self.moe_config = moe_config
|
|
self.num_experts = moe_config.num_experts
|
|
self.top_k = moe_config.top_k
|
|
|
|
self.hidden_act = hidden_act
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.dtype = dtype
|
|
self.weight_dtype = dtype
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.tp_rank = tp_rank
|
|
self.instance_id = instance_id
|
|
self.quant_mode = quant_mode
|
|
|
|
self.experts_per_node = self.num_experts
|
|
if moe_config.tp_mode == MoeConfig.ParallelismMode.EXPERT_PARALLEL:
|
|
if self.num_experts % self.tp_size != 0:
|
|
raise ValueError(
|
|
f"MixtureOfExperts - Number of experts {self.num_experts} is not a multiple of EP size {self.tp_size}"
|
|
)
|
|
self.experts_per_node = self.experts_per_node // tp_size
|
|
|
|
elif moe_config.tp_mode == MoeConfig.ParallelismMode.TENSOR_PARALLEL:
|
|
if self.ffn_hidden_size % self.tp_size != 0:
|
|
raise ValueError(
|
|
f"MixtureOfExperts - FFN Hidden Size {self.ffn_hidden_size} is not a multiple of TP size {self.tp_size}"
|
|
)
|
|
self.ffn_hidden_size = self.ffn_hidden_size // tp_size
|
|
|
|
if quant_mode.is_weight_only():
|
|
self.weight_dtype = trt.int8
|
|
|
|
# TODO: benchmark the router and check best TP configuration
|
|
# Since output dimension is usually low (in the order of 10s), we split on input dim for the moment
|
|
# Maybe no TP at all is even more efficient
|
|
self.router = RowLinear(
|
|
hidden_size,
|
|
self.num_experts,
|
|
bias=False,
|
|
dtype=trt.
|
|
float32, # Routing is sensitive since it conditions what experts are used
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
strict_dtype=True,
|
|
)
|
|
|
|
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
|
|
# The left matrix is a linear projection (no activation applied)
|
|
# The right matrix is the gating value (activation applied)
|
|
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
|
|
expert_1_out_size = self.ffn_hidden_size * 2 if is_gated_activation(
|
|
hidden_act) else self.ffn_hidden_size
|
|
|
|
expert_1_shape = (self.experts_per_node, expert_1_out_size, hidden_size)
|
|
expert_2_shape = (self.experts_per_node, hidden_size,
|
|
self.ffn_hidden_size)
|
|
|
|
if quant_mode.is_weight_only():
|
|
bytes_per_col_scale = 2 if quant_mode.is_int4_weight_only() else 1
|
|
# We use a different shape here because the quantized weights have their own layout
|
|
expert_1_shape = (self.experts_per_node, hidden_size,
|
|
expert_1_out_size // bytes_per_col_scale)
|
|
expert_2_shape = (self.experts_per_node, self.ffn_hidden_size,
|
|
hidden_size // bytes_per_col_scale)
|
|
|
|
self.experts_scale_1 = Parameter(shape=(self.experts_per_node,
|
|
expert_1_out_size),
|
|
dtype=dtype)
|
|
self.experts_scale_2 = Parameter(shape=(self.experts_per_node,
|
|
hidden_size),
|
|
dtype=dtype)
|
|
else:
|
|
self.register_parameter('experts_scale_1', None)
|
|
self.register_parameter('experts_scale_2', None)
|
|
|
|
self.experts_weight_1 = Parameter(shape=expert_1_shape,
|
|
dtype=self.weight_dtype)
|
|
self.experts_weight_2 = Parameter(shape=expert_2_shape,
|
|
dtype=self.weight_dtype)
|
|
|
|
# Note: the bias uses dtype NOT weight_dtype, i.e. it is not quantized
|
|
if bias:
|
|
self.experts_bias_1 = Parameter(shape=(self.experts_per_node,
|
|
expert_1_out_size),
|
|
dtype=dtype)
|
|
self.experts_bias_2 = Parameter(shape=(self.experts_per_node,
|
|
hidden_size),
|
|
dtype=dtype)
|
|
else:
|
|
self.register_parameter('experts_bias_1', None)
|
|
self.register_parameter('experts_bias_2', None)
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
finished=None,
|
|
workspace=None,
|
|
lora_layer_params=None):
|
|
assert lora_layer_params is None, "LoRA + MoE is not supported for the moment"
|
|
routing_input = cast(hidden_states, trt.float32)
|
|
if self.tp_size > 1:
|
|
routing_input = split(routing_input,
|
|
self.router.in_features,
|
|
dim=-1)[self.tp_rank]
|
|
routing = self.router(routing_input)
|
|
output = _moe_plugin(self.moe_config,
|
|
hidden_states,
|
|
routing,
|
|
expert_weight_1=self.experts_weight_1,
|
|
expert_weight_2=self.experts_weight_2,
|
|
expert_bias_1=self.experts_bias_1,
|
|
expert_bias_2=self.experts_bias_2,
|
|
expert_scale_1=self.experts_scale_1,
|
|
expert_scale_2=self.experts_scale_2,
|
|
finished=finished,
|
|
hidden_size=self.hidden_size,
|
|
ffn_hidden_size=self.ffn_hidden_size,
|
|
act_fn=self.hidden_act,
|
|
dtype=self.dtype,
|
|
weight_dtype=self.weight_dtype,
|
|
quant_mode=self.quant_mode,
|
|
tp_size=self.tp_size,
|
|
tp_rank=self.tp_rank)
|
|
|
|
if self.tp_size > 1 and self.tp_group is not None and self.moe_config.tp_mode != MoeConfig.ParallelismMode.NONE:
|
|
output = allreduce(output,
|
|
self.tp_group,
|
|
workspace=workspace,
|
|
instance_id=self.instance_id)
|
|
|
|
return output
|
|
|
|
|
|
MOE = MixtureOfExperts
|