TensorRT-LLMs/tests/functional/test_matmul.py
Kaiyu Xie 711a28d9bf
Update TensorRT-LLM (#465)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-24 22:12:26 +08:00

161 lines
5.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import numpy as np
import pytest
# isort: off
import torch
import tensorrt as trt
# isort: on
from parameterized import parameterized
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import getSMVersion
class TestMatmul(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def _matmul(self, m, n, k, dtype, ta, tb):
shape1 = (k, m) if ta else (m, k)
mat1 = torch.randn(
shape1, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) * 1e-1
shape2 = (n, k) if tb else (k, n)
mat2 = torch.randn(
shape2, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) * 1e-1
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=mat1.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=mat2.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.matmul(x, y, transa=ta,
transb=tb).trt_tensor
output.name = 'output'
network.mark_output(output)
output.dtype = tensorrt_llm.str_dtype_to_trt(dtype)
build_engine = EngineFromNetwork(
(builder.trt_builder, net.trt_network),
config=CreateConfig(
fp16=(dtype == 'float16'),
bf16=(dtype == 'bfloat16'),
precision_constraints='obey',
memory_pool_limits={trt.MemoryPoolType.WORKSPACE: 33554432}))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'x': mat1, 'y': mat2})
if ta:
mat1 = mat1.cuda().transpose(0, 1)
if tb:
mat2 = mat2.cuda().transpose(0, 1)
tols = {
"float32": {
"rtol": 1e-05,
"atol": 1e-05
},
"float16": {
"rtol": 1e-02,
"atol": 1e-02
},
"bfloat16": {
"rtol": 1e-02,
"atol": 1e-02
},
}
if dtype != "float32":
mat1 = mat1.cuda()
mat2 = mat2.cuda()
else:
mat1 = mat1.cpu()
mat2 = mat2.cpu()
ref = torch.matmul(mat1, mat2).to(torch.float32)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'].to(torch.float32),
**tols[dtype])
@parameterized.expand([('float16', False, False), ('float16', False, True),
('float16', True, False), ('float16', True, True),
('bfloat16', True, False), ('bfloat16', True, True),
('float32', False, False), ('float32', False, True),
('float32', True, False), ('float32', True, True)])
def test_matmul(self, dtype, transa, transb):
bs = 2
inseq = 16
hidden_size = 768
tp = 1
# Skip tests that are not supported in pre-ampere architecture
if getSMVersion() < 80:
if dtype == 'bfloat16':
pytest.skip(
"bfloat16 is not supported in pre-ampere architecture")
# qkv_gemm
self._matmul(bs * inseq, 3 * hidden_size // tp, hidden_size, dtype,
transa, transb)
# mlp_gemm_1
self._matmul(bs * inseq, 4 * hidden_size // tp, hidden_size, dtype,
transa, transb)
def test_matmul_broadcast(self):
dtype = 'float32'
x_data = torch.randn(16, 4, 4, 5)
y_data = torch.randn(16, 1, 5, 4)
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=y_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.matmul(x, y).trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
'y': y_data.numpy(),
})
ref = torch.matmul(x_data, y_data)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)