mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
186 lines
5.5 KiB
C++
186 lines
5.5 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/runtime/common.h"
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
class WorldConfig
|
|
{
|
|
public:
|
|
#if ENABLE_MULTI_DEVICE
|
|
static SizeType32 constexpr kDefaultGpusPerNode = 8;
|
|
#else
|
|
static SizeType32 constexpr kDefaultGpusPerNode = 1;
|
|
#endif
|
|
|
|
explicit WorldConfig(SizeType32 tensorParallelism = 1, SizeType32 pipelineParallelism = 1,
|
|
SizeType32 contextParallelism = 1, SizeType32 rank = 0, SizeType32 gpusPerNode = kDefaultGpusPerNode,
|
|
std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt, bool enableAttentionDP = false);
|
|
|
|
[[nodiscard]] SizeType32 constexpr getSize() const noexcept
|
|
{
|
|
return mTensorParallelism * mPipelineParallelism * mContextParallelism;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getTensorParallelism() const noexcept
|
|
{
|
|
return mTensorParallelism;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr isTensorParallel() const noexcept
|
|
{
|
|
return mTensorParallelism > 1;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getPipelineParallelism() const noexcept
|
|
{
|
|
return mPipelineParallelism;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr isPipelineParallel() const noexcept
|
|
{
|
|
return mPipelineParallelism > 1;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getContextParallelism() const noexcept
|
|
{
|
|
return mContextParallelism;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr isContextParallel() const noexcept
|
|
{
|
|
return mContextParallelism > 1;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getRank() const noexcept
|
|
{
|
|
return mRank;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getGpusPerNode() const noexcept
|
|
{
|
|
return mGpusPerNode;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 getGpusPerGroup() const noexcept
|
|
{
|
|
return static_cast<SizeType32>(mDeviceIds.size());
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 getDevice() const noexcept
|
|
{
|
|
return mDeviceIds[mRank % getGpusPerGroup()];
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 getDeviceOf(SizeType32 rank) const noexcept
|
|
{
|
|
return mDeviceIds[rank % getGpusPerGroup()];
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getPipelineParallelRank() const noexcept
|
|
{
|
|
return mRank / (mTensorParallelism * mContextParallelism);
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getTensorParallelRank() const noexcept
|
|
{
|
|
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
|
|
return (mRank % (mTensorParallelism * mContextParallelism)) / mContextParallelism;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getContextParallelRank() const noexcept
|
|
{
|
|
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
|
|
return mRank % mContextParallelism;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getLocalRank() const noexcept
|
|
{
|
|
return mRank % mGpusPerNode;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getNodeRank() const noexcept
|
|
{
|
|
return mRank / mGpusPerNode;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getNodeRankOf(SizeType32 rank) const noexcept
|
|
{
|
|
return rank / mGpusPerNode;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr isFirstPipelineParallelRank() const noexcept
|
|
{
|
|
return getPipelineParallelRank() == 0;
|
|
}
|
|
|
|
//! \brief Is my rank the last rank in its pipeline?
|
|
[[nodiscard]] bool constexpr isLastPipelineParallelRank() const noexcept
|
|
{
|
|
return getPipelineParallelRank() == getPipelineParallelism() - 1;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr isFirstTensorParallelRank() const noexcept
|
|
{
|
|
return getTensorParallelRank() == 0;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr isFirstContextParallelRank() const noexcept
|
|
{
|
|
return getContextParallelRank() == 0;
|
|
}
|
|
|
|
[[nodiscard]] SizeType32 constexpr getLastRank() const noexcept
|
|
{
|
|
return getSize() - 1;
|
|
}
|
|
|
|
[[nodiscard]] bool constexpr enableAttentionDP() const noexcept
|
|
{
|
|
return mEnableAttentionDP;
|
|
}
|
|
|
|
[[nodiscard]] std::vector<SizeType32> getPipelineParallelGroup() const;
|
|
[[nodiscard]] std::vector<SizeType32> getTensorParallelGroup() const;
|
|
[[nodiscard]] std::vector<SizeType32> getContextParallelGroup() const;
|
|
|
|
static WorldConfig mpi(SizeType32 gpusPerNode = kDefaultGpusPerNode,
|
|
std::optional<SizeType32> tensorParallelism = std::nullopt,
|
|
std::optional<SizeType32> pipelineParallelism = std::nullopt,
|
|
std::optional<SizeType32> contextParallelism = std::nullopt,
|
|
std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt, bool enableAttentionDP = false);
|
|
|
|
[[nodiscard]] bool validMpiConfig() const;
|
|
|
|
private:
|
|
SizeType32 mTensorParallelism;
|
|
SizeType32 mPipelineParallelism;
|
|
SizeType32 mContextParallelism;
|
|
SizeType32 mRank;
|
|
SizeType32 mGpusPerNode;
|
|
bool mEnableAttentionDP;
|
|
std::vector<SizeType32> mDeviceIds;
|
|
};
|
|
|
|
} // namespace tensorrt_llm::runtime
|