TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/worldConfig.h
Balaram Buddharaju a792c23dcf
[TRTLLM-9465][fix] Swap TP-CP grouping order (#10350)
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
2026-01-05 20:08:03 +08:00

186 lines
5.5 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/common.h"
#include <NvInferRuntime.h>
#include <optional>
#include <vector>
namespace tensorrt_llm::runtime
{
class WorldConfig
{
public:
#if ENABLE_MULTI_DEVICE
static SizeType32 constexpr kDefaultGpusPerNode = 8;
#else
static SizeType32 constexpr kDefaultGpusPerNode = 1;
#endif
explicit WorldConfig(SizeType32 tensorParallelism = 1, SizeType32 pipelineParallelism = 1,
SizeType32 contextParallelism = 1, SizeType32 rank = 0, SizeType32 gpusPerNode = kDefaultGpusPerNode,
std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt, bool enableAttentionDP = false);
[[nodiscard]] SizeType32 constexpr getSize() const noexcept
{
return mTensorParallelism * mPipelineParallelism * mContextParallelism;
}
[[nodiscard]] SizeType32 constexpr getTensorParallelism() const noexcept
{
return mTensorParallelism;
}
[[nodiscard]] bool constexpr isTensorParallel() const noexcept
{
return mTensorParallelism > 1;
}
[[nodiscard]] SizeType32 constexpr getPipelineParallelism() const noexcept
{
return mPipelineParallelism;
}
[[nodiscard]] bool constexpr isPipelineParallel() const noexcept
{
return mPipelineParallelism > 1;
}
[[nodiscard]] SizeType32 constexpr getContextParallelism() const noexcept
{
return mContextParallelism;
}
[[nodiscard]] bool constexpr isContextParallel() const noexcept
{
return mContextParallelism > 1;
}
[[nodiscard]] SizeType32 constexpr getRank() const noexcept
{
return mRank;
}
[[nodiscard]] SizeType32 constexpr getGpusPerNode() const noexcept
{
return mGpusPerNode;
}
[[nodiscard]] SizeType32 getGpusPerGroup() const noexcept
{
return static_cast<SizeType32>(mDeviceIds.size());
}
[[nodiscard]] SizeType32 getDevice() const noexcept
{
return mDeviceIds[mRank % getGpusPerGroup()];
}
[[nodiscard]] SizeType32 getDeviceOf(SizeType32 rank) const noexcept
{
return mDeviceIds[rank % getGpusPerGroup()];
}
[[nodiscard]] SizeType32 constexpr getPipelineParallelRank() const noexcept
{
return mRank / (mTensorParallelism * mContextParallelism);
}
[[nodiscard]] SizeType32 constexpr getTensorParallelRank() const noexcept
{
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
return (mRank % (mTensorParallelism * mContextParallelism)) / mContextParallelism;
}
[[nodiscard]] SizeType32 constexpr getContextParallelRank() const noexcept
{
// Layout: pp is outermost, then tp, then cp is innermost (consecutive).
return mRank % mContextParallelism;
}
[[nodiscard]] SizeType32 constexpr getLocalRank() const noexcept
{
return mRank % mGpusPerNode;
}
[[nodiscard]] SizeType32 constexpr getNodeRank() const noexcept
{
return mRank / mGpusPerNode;
}
[[nodiscard]] SizeType32 constexpr getNodeRankOf(SizeType32 rank) const noexcept
{
return rank / mGpusPerNode;
}
[[nodiscard]] bool constexpr isFirstPipelineParallelRank() const noexcept
{
return getPipelineParallelRank() == 0;
}
//! \brief Is my rank the last rank in its pipeline?
[[nodiscard]] bool constexpr isLastPipelineParallelRank() const noexcept
{
return getPipelineParallelRank() == getPipelineParallelism() - 1;
}
[[nodiscard]] bool constexpr isFirstTensorParallelRank() const noexcept
{
return getTensorParallelRank() == 0;
}
[[nodiscard]] bool constexpr isFirstContextParallelRank() const noexcept
{
return getContextParallelRank() == 0;
}
[[nodiscard]] SizeType32 constexpr getLastRank() const noexcept
{
return getSize() - 1;
}
[[nodiscard]] bool constexpr enableAttentionDP() const noexcept
{
return mEnableAttentionDP;
}
[[nodiscard]] std::vector<SizeType32> getPipelineParallelGroup() const;
[[nodiscard]] std::vector<SizeType32> getTensorParallelGroup() const;
[[nodiscard]] std::vector<SizeType32> getContextParallelGroup() const;
static WorldConfig mpi(SizeType32 gpusPerNode = kDefaultGpusPerNode,
std::optional<SizeType32> tensorParallelism = std::nullopt,
std::optional<SizeType32> pipelineParallelism = std::nullopt,
std::optional<SizeType32> contextParallelism = std::nullopt,
std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt, bool enableAttentionDP = false);
[[nodiscard]] bool validMpiConfig() const;
private:
SizeType32 mTensorParallelism;
SizeType32 mPipelineParallelism;
SizeType32 mContextParallelism;
SizeType32 mRank;
SizeType32 mGpusPerNode;
bool mEnableAttentionDP;
std::vector<SizeType32> mDeviceIds;
};
} // namespace tensorrt_llm::runtime