TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/mlaCacheFormatter.cpp
Balaram Buddharaju a792c23dcf
[TRTLLM-9465][fix] Swap TP-CP grouping order (#10350)
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
2026-01-05 20:08:03 +08:00

674 lines
32 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mlaCacheFormatter.h"
#include "tensorrt_llm/batch_manager/cacheFormatter.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/dataType.h"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/nvtxUtils.h"
#include "tensorrt_llm/executor/cache_transmission/agent_utils/connection.h"
#include "tensorrt_llm/executor/cache_transmission/cacheSplitConcat.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include <cstddef>
#include <cstdint>
#include <future>
namespace tensorrt_llm::batch_manager::kv_cache_manager
{
// some context rank in connection
std::vector<size_t> MLACacheFormatter::pickRecvConnections(
size_t numConnections, CacheState const& selfConfig, SizeType32 selfIdx, CacheState const& destConfig) const
{
auto targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
// This function is called only by gen side and we only support CPSize=1 on context size.
TLLM_CHECK(targetInfo.mDomainCPSize == 1);
TLLM_CHECK(numConnections == targetInfo.mIRanks.size());
std::vector<size_t> ret;
// targetInfo , mRanks [tpranks, ppranks]
int dpRank = selfConfig.getParallelConfig().mEnableAttentionDP ? selfConfig.getParallelConfig().mDPrank : 0;
for (int i = 0; i < targetInfo.mDomainPPSize; i++)
{
ret.push_back(i + (dpRank % (targetInfo.mDomainTPSize)) * targetInfo.mDomainPPSize);
}
return ret;
}
bool MLACacheFormatter::needSendCache(
CacheState const& selfConfig, CacheState const& destConfig, runtime::SizeType32 selfIdx)
{
int selfCpSize = selfConfig.getParallelConfig().mContextParallelism;
int selfTpRank = (selfIdx % (selfConfig.getParallelConfig().mTensorParallelism * selfCpSize)) / selfCpSize;
int destTPNumInDPGroup = destConfig.getParallelConfig().mEnableAttentionDP
? destConfig.getParallelConfig().mTensorParallelism / destConfig.getParallelConfig().mDPsize
: destConfig.getParallelConfig().mTensorParallelism;
int destDPRank = destConfig.getParallelConfig().mEnableAttentionDP ? destConfig.getParallelConfig().mDPrank : 0;
if (selfConfig.getParallelConfig().mEnableAttentionDP)
{
int selfTPNumInDPGroup
= selfConfig.getParallelConfig().mTensorParallelism / selfConfig.getParallelConfig().mDPsize;
int selfTPrankINDPGroup = selfTpRank % selfTPNumInDPGroup;
if (selfTPNumInDPGroup <= destTPNumInDPGroup)
{
return true;
}
int dupHeadFactor = selfTPNumInDPGroup / destTPNumInDPGroup;
return selfTPrankINDPGroup % dupHeadFactor == destDPRank % dupHeadFactor;
}
int destTPNum = destConfig.getParallelConfig().mEnableAttentionDP
? destConfig.getParallelConfig().mTensorParallelism / destConfig.getParallelConfig().mDPsize
: destConfig.getParallelConfig().mTensorParallelism;
int selfTPNum = selfConfig.getParallelConfig().mTensorParallelism;
if (selfTPNum <= destTPNum)
{
return true;
}
int dupHeadFactor = selfTPNum / destTPNum;
return selfTpRank % dupHeadFactor == destDPRank % dupHeadFactor;
}
void MLACacheFormatter::format(tensorrt_llm::batch_manager::TransferSession& session)
{
NVTX3_SCOPED_RANGE(MLACacheFormatter_format);
session.setTime(TransferSession::kTimeFormatter);
auto const& llmRequest = session.getLlmRequest();
TLLM_LOG_DEBUG(
mpi::MpiComm::world().getRank(), "Start sending KV cache for request ID: %ld.", llmRequest.mRequestId);
auto const& selfConfig = session.getSelfState().getCacheState().value();
auto const& destConfig = session.getOtherState().getCacheState().value();
auto const selfIdx = session.getSelfState().getCommState().value().getSelfIdx();
auto indexFromEnd = session.getIndexFromEnd();
auto const& lastBlockKey = session.getLastBlockKey();
auto const& connections = session.getConnections();
auto& bufferManager = session.getBufferManager();
TLLM_CHECK_WITH_INFO(llmRequest.mSamplingConfig.beamWidth == 1, "Currently only supports beam width 1.");
TLLM_CHECK(!connections.empty());
if (!needSendCache(selfConfig, destConfig, selfIdx))
{
return;
}
bool hasIndexerKCache = mCacheManager->getIndexerKCachePool() != nullptr;
std::vector<bool> transferringIndexerKCache;
transferringIndexerKCache.push_back(false);
if (hasIndexerKCache)
{
transferringIndexerKCache.push_back(true);
}
auto const numPools = mCacheManager->getBlockManager().getNumPools(
/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
bool const recvSideHasCP = destConfig.getParallelConfig().mContextParallelism > 1;
auto blockRange = getBlockRangeForSending(mCacheManager, llmRequest, lastBlockKey, indexFromEnd, recvSideHasCP);
auto const& windowSizes = blockRange.getWindowSizes();
TLLM_CHECK_WITH_INFO(
static_cast<int>(windowSizes.size()) == numPools, "window sizes should be the same as numPools");
for (auto transferIndexerKCache : transferringIndexerKCache)
{
auto activeBufferIdx = transferIndexerKCache ? 1UL : 0UL;
for (auto const* connection : connections)
{
if (auto const* agentConnection = dynamic_cast<executor::kv_cache::AgentConnection const*>(connection))
{
TLLM_CHECK(agentConnection->getSenderBufferCount() > activeBufferIdx);
const_cast<executor::kv_cache::AgentConnection*>(agentConnection)
->setActiveSenderBufferIdx(activeBufferIdx);
}
}
int blockNum = 0;
std::vector<runtime::ITensor::SharedPtr> inputKvCacheBlocks;
if (!transferIndexerKCache)
{
for (auto const& windowSize : windowSizes)
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSize);
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
inputKvCacheBlocks.push_back(it);
blockNum++;
}
}
}
else
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSizes.at(0), true);
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
inputKvCacheBlocks.push_back(it);
blockNum++;
}
}
TLLM_CHECK(blockNum > 0);
int deviceId = mCacheManager->getBlockManager().getStreamDevice();
if (common::getEnvTryZCopyForKVCacheTransfer()
&& destConfig.getParallelConfig().mPipelineParallelism
== selfConfig.getParallelConfig().mPipelineParallelism)
{
TLLM_LOG_DEBUG("Try using zero-copy for the KV cache.");
NVTX3_SCOPED_RANGE(sendBufferFun);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
for (size_t i = 0; i < connections.size(); i++)
{
for (auto const& block : inputKvCacheBlocks)
{
session.send(i, block->data(), block->getSizeInBytes());
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "End the sending of KV cache for the request ID: %ld.",
llmRequest.mRequestId);
return;
}
auto targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
size_t pPDomainSize = targetInfo.mDomainPPSize;
size_t cPDomainSize = targetInfo.mDomainCPSize;
auto getBufferSizeForTarget = [&]()
{
auto const ppRank = selfIdx
/ (selfConfig.getParallelConfig().mTensorParallelism
* selfConfig.getParallelConfig().mContextParallelism);
auto const selfAttentionLayerNum = selfConfig.getParallelConfig().mAttentionLayerNumPerPP.at(ppRank);
auto const cacheBlockSize = inputKvCacheBlocks.at(0)->getSize();
auto const blockSizePerLayer = cacheBlockSize / selfAttentionLayerNum;
std::vector<size_t> bufferSizeForTarget(pPDomainSize * cPDomainSize, 0);
for (size_t ppDomainIdx = 0; ppDomainIdx < pPDomainSize; ppDomainIdx++)
{
auto const peerAttentionLayerNum = targetInfo.getPeerPPDomainLayerNum(ppDomainIdx);
for (size_t cpDomainIdx = 0; cpDomainIdx < cPDomainSize; cpDomainIdx++)
{
auto const idx = cpDomainIdx * pPDomainSize + ppDomainIdx;
// Note: contextCP is always 1. So, cpDomainSize == genCPSize and cpDomainIdx == genCPRank.
auto const peerBlockNum
= executor::kv_cache::getBlockNumAccountingForCP(cpDomainIdx, cPDomainSize, blockNum);
bufferSizeForTarget[idx] = blockSizePerLayer * peerAttentionLayerNum * peerBlockNum;
}
}
return bufferSizeForTarget;
};
auto bufferEleSizes = getBufferSizeForTarget();
auto cacheBufferId = mCacheTransBufferManagers[transferIndexerKCache]->assignBufferIndexForSend();
auto result = mCacheTransBufferManagers[transferIndexerKCache]->getOrAllocateSendBuffers(
cacheBufferId, static_cast<int>(pPDomainSize * cPDomainSize), bufferEleSizes, bufferManager);
auto& outputSplitCaches = std::get<0>(result);
auto& bufferCoverTargetNum = std::get<1>(result);
auto& onlyUseDynamicBuffer = std::get<2>(result);
auto* agentConnnecion = dynamic_cast<executor::kv_cache::AgentConnection const*>(connections[0]);
if (agentConnnecion != nullptr)
{
TLLM_CHECK_WITH_INFO(
bufferCoverTargetNum == pPDomainSize * cPDomainSize, "Agent need all buffer pre-allocated");
TLLM_CHECK(onlyUseDynamicBuffer == false);
}
// The size of outputSplitCaches should be equal to pPDomainSize * cPDomainSize.
SizeType32 window = mCacheManager->getBlockManager().getPoolWindowSize(0);
std::map<SizeType32, std::vector<runtime::ITensor::SharedPtr>> inputKvCacheBlocksPerWindow;
inputKvCacheBlocksPerWindow.emplace(window, inputKvCacheBlocks);
tensorrt_llm::executor::kv_cache::splitKVCacheDispatch(inputKvCacheBlocksPerWindow, outputSplitCaches,
destConfig, selfConfig, selfIdx, bufferManager, transferIndexerKCache);
bufferManager.getStream().synchronize();
session.setTime(TransferSession::kTimePreprocess);
auto preAllocSendBuffer = mCacheTransBufferManagers[transferIndexerKCache]->getSendBuffer(cacheBufferId);
if (preAllocSendBuffer != nullptr)
{
TLLM_CHECK(preAllocSendBuffer->getDataType() == inputKvCacheBlocks.at(0)->getDataType());
}
auto sendBufferFun = [&](int deviceId, size_t processIdx)
{
NVTX3_SCOPED_RANGE(sendBufferFun);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
auto startTime = LlmRequest::getSteadyClockNow();
auto cacheIdx = processIdx % (pPDomainSize * cPDomainSize);
if (cacheIdx < bufferCoverTargetNum)
{
size_t size = outputSplitCaches.at(cacheIdx)->getSizeInBytes();
session.send(processIdx, outputSplitCaches.at(cacheIdx)->data(), size);
}
else
{
// If cacheIdx< bufferCoverTargetNum, the ouputSplitCaches.at(cacheIdx) is allocated by cudaMallocAsync,
// which is unable to be transferred by UCX GPU-direct RDMA. We need copy the data to pre-allocated
// cudaMalloc buffer,and then start send.
// bufferCoverTargetNum=0, mSendBuffer size < one outputSlice send multiple times
size_t remainSendSize = outputSplitCaches.at(cacheIdx)->getSize();
size_t needSendSize = outputSplitCaches.at(cacheIdx)->getSize();
auto sendBufferIdx = bufferCoverTargetNum == 0 ? 0 : cacheIdx % bufferCoverTargetNum;
auto sendBufferUsed
= bufferCoverTargetNum == 0 ? preAllocSendBuffer : outputSplitCaches.at(sendBufferIdx);
while (remainSendSize > 0)
{
TLLM_CHECK(sendBufferUsed != nullptr);
auto sendBufferEleSize = sendBufferUsed->getSize();
auto sendSize = std::min(remainSendSize, sendBufferEleSize);
auto copySlice = runtime::ITensor::slice(
outputSplitCaches.at(cacheIdx), needSendSize - remainSendSize, sendSize);
auto copyTargetSlice = runtime::ITensor::slice(sendBufferUsed, 0, sendSize);
bufferManager.copy(*copySlice, *copyTargetSlice);
bufferManager.getStream().synchronize();
session.send(processIdx, copyTargetSlice->data(), copyTargetSlice->getSizeInBytes());
remainSendSize -= sendSize;
}
}
auto endTime = LlmRequest::getSteadyClockNow();
session.appendMeasure(startTime, endTime, outputSplitCaches.at(cacheIdx)->getSizeInBytes());
};
if (connections.size() > 1)
{
if (!common::getEnvEnableReceiveKVCacheParallel())
{
TLLM_LOG_DEBUG("Disable parallel receiving of the KV cache.");
for (size_t i = 0; i < connections.size(); i++)
{
sendBufferFun(deviceId, i);
}
}
else
{
// concurrency num
auto concurrencyNum
= std::min(std::max(static_cast<size_t>(1), bufferCoverTargetNum), pPDomainSize * cPDomainSize);
auto remainSendNum = connections.size();
while (remainSendNum > 0)
{
auto sendConcurrencyNum = std::min(remainSendNum, concurrencyNum);
std::vector<std::future<void>> futures;
futures.reserve(sendConcurrencyNum);
for (size_t i = 0; i < sendConcurrencyNum; i++)
{
TLLM_CHECK((i + (connections.size() - remainSendNum)) < connections.size());
futures.push_back(std::async(
std::launch::async, sendBufferFun, deviceId, i + (connections.size() - remainSendNum)));
}
for (auto& future : futures)
{
future.get();
}
remainSendNum -= sendConcurrencyNum;
}
}
}
else
{
sendBufferFun(deviceId, 0);
}
mCacheTransBufferManagers[transferIndexerKCache]->freeBufferIndexForSend(cacheBufferId);
}
session.setTime(TransferSession::kTimeTransmissions);
session.setTime(TransferSession::kTimePostprocess);
TLLM_LOG_DEBUG(
mpi::MpiComm::world().getRank(), "End the sending of KV cache for the request ID: %ld.", llmRequest.mRequestId);
}
void MLACacheFormatter::unformat(tensorrt_llm::batch_manager::TransferSession& session)
{
NVTX3_SCOPED_RANGE(MLACacheFormatter_unformat);
session.setTime(TransferSession::kTimeFormatter);
auto const& llmRequest = session.getLlmRequest();
TLLM_CHECK_WITH_INFO(llmRequest.mSamplingConfig.beamWidth == 1, "Currently only supports beam width 1.");
auto const ctxReqId = llmRequest.getContextPhaseParams().value().getReqId();
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
"Start receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId, ctxReqId);
auto const& selfConfig = session.getSelfState().getCacheState().value();
auto const& destConfig = session.getOtherState().getCacheState().value();
auto const selfIdx = session.getSelfState().getCommState().value().getSelfIdx();
auto const& connections = session.getConnections();
auto& bufferManager = session.getBufferManager();
auto pickUpConnections = pickRecvConnections(connections.size(), selfConfig, selfIdx, destConfig);
bool const recvSideHasCP = selfConfig.getParallelConfig().mContextParallelism > 1;
auto blockRange
= getBlockRangeForReceiving(mCacheManager, llmRequest, destConfig.getEnableBlockReuse(), recvSideHasCP);
auto const numPools = mCacheManager->getBlockManager().getNumPools(
/*includeBlockScalePools=*/false, /*includeIndexerKCachePools=*/false);
auto const& windowSizes = blockRange.getWindowSizes();
TLLM_CHECK_WITH_INFO(
static_cast<int>(windowSizes.size()) == numPools, "window sizes should be the same as numPools");
// TODO(oargov): are we sure the other side has the same number of pools? this might not hold for pp_size>1...
bool hasIndexerKCache = mCacheManager->getIndexerKCachePool() != nullptr;
std::vector<bool> transferringIndexerKCache;
transferringIndexerKCache.push_back(false);
if (hasIndexerKCache)
{
transferringIndexerKCache.push_back(true);
}
for (auto transferIndexerKCache : transferringIndexerKCache)
{
std::vector<runtime::ITensor::SharedPtr> recvBufferTmps;
std::vector<runtime::ITensor::SharedPtr> outputBuffers;
size_t blockNum = 0;
if (!transferIndexerKCache)
{
for (auto const& windowSize : windowSizes)
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSize);
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
outputBuffers.push_back(it);
blockNum++;
}
}
}
else
{
auto blockRangeForWindow = blockRange.getBlockRangeForWindow(windowSizes.at(0), true);
for (auto it = blockRangeForWindow.begin(); it != blockRangeForWindow.end(); ++it)
{
outputBuffers.push_back(it);
blockNum++;
}
}
int deviceId = bufferManager.getStream().getDevice();
std::optional<int> cacheBufferId = std::nullopt;
if (common::getEnvTryZCopyForKVCacheTransfer()
&& destConfig.getParallelConfig().mPipelineParallelism
== selfConfig.getParallelConfig().mPipelineParallelism)
{
// recv
TLLM_LOG_DEBUG("Try zcopy for KV cache");
NVTX3_SCOPED_RANGE(recvBufferFun);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
TLLM_CHECK(pickUpConnections.size() == 1);
for (size_t i = 0; i < pickUpConnections.size(); i++)
{
for (auto const& block : outputBuffers)
{
llmRequest.updateKvCacheSize(block->getSizeInBytes());
session.recv(pickUpConnections[i], block->data(), block->getSizeInBytes());
}
}
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
"End receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId,
llmRequest.getContextPhaseParams().value().getReqId());
return;
}
else
{
auto* agentConnnecion = dynamic_cast<executor::kv_cache::AgentConnection const*>(connections[0]);
size_t activeBufferIdx = transferIndexerKCache ? 1 : 0;
if (agentConnnecion != nullptr)
{
cacheBufferId = agentConnnecion->getCacheBufferId(activeBufferIdx);
TLLM_CHECK(cacheBufferId.has_value());
}
else
{
cacheBufferId = mCacheTransBufferManagers[transferIndexerKCache]->assignBufferIndexForRecv();
}
auto targetNum = pickUpConnections.size();
auto getBufferSizeForTarget = [&]()
{
auto const targetInfo = executor::kv_cache::targetIRanks(destConfig, selfConfig, selfIdx);
auto const cacheBlockSize = outputBuffers.at(0)->getSize();
auto const ppRank = selfIdx
/ (selfConfig.getParallelConfig().mTensorParallelism
* selfConfig.getParallelConfig().mContextParallelism);
auto const selfAttentionLayerNum = selfConfig.getParallelConfig().mAttentionLayerNumPerPP.at(ppRank);
TLLM_CHECK_WITH_INFO(selfAttentionLayerNum != 0, "selfAttentionLayerNum should not be 0");
std::vector<size_t> bufferEleSizes(targetNum, 0);
auto const cacheSizePerLayer = cacheBlockSize * blockNum / selfAttentionLayerNum;
for (size_t i = 0; i < targetNum; i++)
{
auto const peerAttentionLayerNum
= targetInfo.getPeerPPDomainLayerNum(static_cast<SizeType32>(pickUpConnections[i]));
bufferEleSizes[i] = cacheSizePerLayer * peerAttentionLayerNum;
}
return bufferEleSizes;
};
auto bufferEleSizes = getBufferSizeForTarget();
auto result = mCacheTransBufferManagers[transferIndexerKCache]->getOrAllocateRecvBuffers(
cacheBufferId, static_cast<int>(targetNum), bufferEleSizes, bufferManager);
auto& recvSplitCaches = std::get<0>(result);
auto& bufferCoverTargetNum = std::get<1>(result);
size_t remainNoCoverTargetNum = targetNum > bufferCoverTargetNum ? targetNum - bufferCoverTargetNum : 0;
auto& onlyUseDynamicBuffer = std::get<2>(result);
if (agentConnnecion != nullptr)
{
TLLM_CHECK_WITH_INFO(bufferCoverTargetNum == targetNum, "Agent need buffer pre-allocated");
TLLM_CHECK(onlyUseDynamicBuffer == false);
}
bufferManager.getStream().synchronize();
session.setTime(TransferSession::kTimePreprocess);
auto preAllocRecvBuffer = mCacheTransBufferManagers[transferIndexerKCache]->getRecvBuffer(cacheBufferId);
if (preAllocRecvBuffer != nullptr)
{
TLLM_CHECK(preAllocRecvBuffer->getDataType() == outputBuffers.at(0)->getDataType());
}
auto recvBufferFun = [&](int deviceId, size_t processIdx)
{
NVTX3_SCOPED_RANGE(recvBufferFun);
TLLM_CUDA_CHECK(cudaSetDevice(deviceId));
auto startTime = LlmRequest::getSteadyClockNow();
size_t size = 0;
if (processIdx >= remainNoCoverTargetNum)
{
auto& buffer = recvSplitCaches.at(processIdx);
llmRequest.updateKvCacheSize(buffer->getSizeInBytes());
size = buffer->getSizeInBytes();
session.recv(pickUpConnections.at(processIdx), buffer->data(), buffer->getSizeInBytes());
}
else
{
auto recvBufferIdx
= bufferCoverTargetNum == 0 ? 0 : processIdx % bufferCoverTargetNum + remainNoCoverTargetNum;
auto recvBufferUsed
= bufferCoverTargetNum == 0 ? preAllocRecvBuffer : recvSplitCaches[recvBufferIdx];
// bufferCoverTargetNum==0
size_t remainRecvSize = recvBufferUsed->getSize();
size_t needRecvSize = recvSplitCaches.at(processIdx)->getSize();
while (remainRecvSize > 0)
{
TLLM_CHECK(recvBufferUsed != nullptr);
auto recvBufferEleSize = recvBufferUsed->getSize();
auto recvSize = std::min(remainRecvSize, recvBufferEleSize);
auto recvSlice = runtime::ITensor::slice(recvBufferUsed, 0, recvSize);
auto copySlice = runtime::ITensor::slice(
recvSplitCaches.at(processIdx), needRecvSize - remainRecvSize, recvSize);
llmRequest.updateKvCacheSize(recvSlice->getSizeInBytes());
size += recvSlice->getSizeInBytes();
session.recv(pickUpConnections.at(processIdx), recvSlice->data(), recvSlice->getSizeInBytes());
bufferManager.copy(*recvSlice, *copySlice);
bufferManager.getStream().synchronize();
remainRecvSize -= recvSize;
}
}
auto endTime = LlmRequest::getSteadyClockNow();
session.appendMeasure(startTime, endTime, size);
};
if (pickUpConnections.size() > 1)
{
if (!common::getEnvEnableReceiveKVCacheParallel())
{
for (size_t i = 0; i < pickUpConnections.size(); i++)
{
recvBufferFun(deviceId, i);
}
}
else
{
// concurrency num
auto concurrencyNum
= std::min(std::max(static_cast<size_t>(1), bufferCoverTargetNum), pickUpConnections.size());
auto remainRecvNum = pickUpConnections.size();
while (remainRecvNum > 0)
{
auto recvConcurrencyNum = std::min(remainRecvNum, concurrencyNum);
if (remainRecvNum > concurrencyNum && remainRecvNum < (2 * concurrencyNum))
{
recvConcurrencyNum = remainRecvNum - concurrencyNum;
}
std::vector<std::future<void>> futures;
futures.reserve(recvConcurrencyNum);
for (size_t i = 0; i < recvConcurrencyNum; i++)
{
TLLM_CHECK((i + (pickUpConnections.size() - remainRecvNum)) < pickUpConnections.size());
futures.push_back(std::async(std::launch::async, recvBufferFun, deviceId,
i + (pickUpConnections.size() - remainRecvNum)));
}
for (auto& future : futures)
{
future.get();
}
remainRecvNum -= recvConcurrencyNum;
}
}
}
else
{
recvBufferFun(deviceId, 0);
}
session.setTime(TransferSession::kTimeTransmissions);
{
std::map<SizeType32, std::vector<runtime::ITensor::SharedPtr>> outputCachesPerWindow;
SizeType32 window = mCacheManager->getBlockManager().getPoolWindowSize(0);
outputCachesPerWindow.emplace(window, outputBuffers);
NVTX3_SCOPED_RANGE(formatInputConcatenate);
// recvSplitCaches size == ppdomainsize * cpdomainsize.
executor::kv_cache::concatKvCacheV2Dispatch(recvSplitCaches, outputCachesPerWindow, destConfig,
selfConfig, selfIdx, bufferManager, transferIndexerKCache);
}
bufferManager.getStream().synchronize();
}
if (cacheBufferId.has_value())
{
mCacheTransBufferManagers[transferIndexerKCache]->freeBufferIndexForRecv(cacheBufferId);
}
}
session.setTime(TransferSession::kTimePostprocess);
TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(),
"End receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId,
llmRequest.getContextPhaseParams().value().getReqId());
}
[[nodiscard]] bool MLACacheFormatter::inquireSupport(CacheState const& selfConfig, CacheState const& destConfig) const
{
if (selfConfig.getDataType() != destConfig.getDataType())
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support same data type");
return false;
}
if (selfConfig.getAttentionConfig().mAttentionType != CacheState::AttentionType::kMLA
|| destConfig.getAttentionConfig().mAttentionType != CacheState::AttentionType::kMLA)
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support MLA");
return false;
}
if (selfConfig.getAttentionConfig().mKvFactor != destConfig.getAttentionConfig().mKvFactor)
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support same kv factor");
return false;
}
std::unordered_set<SizeType32> setVecSelf{
selfConfig.getModelConfig().mNbKvHeadsPerLayer.begin(), selfConfig.getModelConfig().mNbKvHeadsPerLayer.end()};
if (setVecSelf.size() != 1)
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support equal number of heads per layer");
return false;
}
std::unordered_set<int> setVecDest{
destConfig.getModelConfig().mNbKvHeadsPerLayer.begin(), destConfig.getModelConfig().mNbKvHeadsPerLayer.end()};
if (setVecDest.size() != 1)
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support equal number of heads per layer");
return false;
}
if (selfConfig.getModelConfig().mTokensPerBlock != destConfig.getModelConfig().mTokensPerBlock
|| selfConfig.getModelConfig().mSizePerHead != destConfig.getModelConfig().mSizePerHead)
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support same tokens per block and size per head");
return false;
}
if (selfConfig.getModelConfig().mNbKvHeadsPerLayer.size() != destConfig.getModelConfig().mNbKvHeadsPerLayer.size())
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support same number of layers");
return false;
}
if ((selfConfig.getModelConfig().mNbKvHeadsPerLayer.at(0) != 1)
|| (selfConfig.getModelConfig().mNbKvHeadsPerLayer.at(0) != 1))
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: only support MLA");
return false;
}
if (selfConfig.getParallelConfig().mEnableAttentionDP
&& (selfConfig.getParallelConfig().mTensorParallelism % selfConfig.getParallelConfig().mDPsize != 0))
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: TP size must be divisible by DP size");
return false;
}
if (destConfig.getParallelConfig().mEnableAttentionDP
&& (destConfig.getParallelConfig().mTensorParallelism % destConfig.getParallelConfig().mDPsize != 0))
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: TP size must be divisible by DP size");
return false;
}
if ((destConfig.getParallelConfig().mEnableAttentionDP)
&& (destConfig.getParallelConfig().mTensorParallelism != destConfig.getParallelConfig().mDPsize))
{
TLLM_LOG_WARNING("MLACacheFormatter::inquireSupport: TP size must be equal to DP size");
return false;
}
return true;
}
} // namespace tensorrt_llm::batch_manager::kv_cache_manager