mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
176 lines
7.0 KiB
Python
176 lines
7.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import Optional
|
|
|
|
import safetensors
|
|
|
|
from ..._utils import numpy_to_torch
|
|
from ...functional import ACT2FN, Tensor, concat, shape, slice
|
|
from ...layers import Linear
|
|
from ...logger import logger
|
|
from ...mapping import Mapping
|
|
from ...models import CLIPVisionTransformer
|
|
from ...module import Module
|
|
from ...parameter import Parameter
|
|
from ..model_weights_loader import ModelWeightsLoader
|
|
from ..modeling_utils import PretrainedModel, QuantConfig
|
|
from .config import LlavaNextVisionConfig
|
|
|
|
|
|
# Adapted from https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/llava_next/modeling_llava_next.py#L149
|
|
class LlavaNextMultiModalProjector(Module):
|
|
|
|
def __init__(self, config: LlavaNextVisionConfig):
|
|
super().__init__()
|
|
|
|
self.linear_1 = Linear(config.hidden_size,
|
|
config.text_hidden_size,
|
|
dtype=config.dtype)
|
|
self.act = ACT2FN[config.projector_hidden_act]
|
|
self.linear_2 = Linear(config.text_hidden_size,
|
|
config.text_hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self, image_features):
|
|
hidden_states = self.linear_1(image_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class LlavaNextVisionWrapper(PretrainedModel):
|
|
|
|
def __init__(self, config: LlavaNextVisionConfig):
|
|
super().__init__(config)
|
|
self.vision_tower = None
|
|
self.config = config
|
|
if config.vision_model_type == "clip_vision_model":
|
|
self.vision_tower = CLIPVisionTransformer(
|
|
image_size=config.image_size,
|
|
num_channels=config.num_channels,
|
|
patch_size=config.patch_size,
|
|
hidden_size=config.hidden_size,
|
|
num_attention_heads=config.num_attention_heads,
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
norm_epsilon=config.norm_epsilon,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
num_hidden_layers=config.num_hidden_layers,
|
|
require_ln_f=False,
|
|
mapping=config.mapping,
|
|
dtype=config.dtype)
|
|
else:
|
|
logger.error(
|
|
"Currently TRT-LLM only supports CLIP vision transformer.")
|
|
|
|
self.multi_modal_projector = LlavaNextMultiModalProjector(config)
|
|
self.image_newline = Parameter(shape=(config.text_hidden_size, ),
|
|
dtype=config.dtype)
|
|
|
|
def forward(self, pixel_values, position_ids=None):
|
|
image_features = self.vision_tower(pixel_values)
|
|
select_size = concat([
|
|
shape(image_features, 0), image_features.shape[1] - 1,
|
|
shape(image_features, 2)
|
|
])
|
|
selected_image_feature = slice(image_features,
|
|
starts=[0, 1, 0],
|
|
sizes=select_size) # (bs, 576, c)
|
|
image_features = self.multi_modal_projector(selected_image_feature)
|
|
image_features.mark_output('image_features', self.config.dtype)
|
|
return image_features # (bs, 576, c)
|
|
|
|
@classmethod
|
|
def from_hugging_face(cls,
|
|
hf_model_dir: str,
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config: Optional[QuantConfig] = None,
|
|
**kwargs):
|
|
''' Create a LlavaNextVisionWrapper object from give parameters
|
|
'''
|
|
if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER") is not None:
|
|
logger.error(
|
|
"Please enable unified converter to convert llava-next checkpoints."
|
|
)
|
|
|
|
config = LlavaNextVisionConfig.from_hugging_face(
|
|
hf_model_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
|
|
custom_dict = {}
|
|
if "llava" in hf_model_dir:
|
|
custom_dict = {
|
|
"vision_tower": "vision_tower.vision_model",
|
|
"input_layernorm": "layer_norm1",
|
|
"post_layernorm": "layer_norm2",
|
|
"fc": "fc1",
|
|
"proj": "fc2",
|
|
"dense": "out_proj",
|
|
"pre_layernorm": "pre_layrnorm",
|
|
"ln_f": "post_layernorm",
|
|
}
|
|
loader = ModelWeightsLoader(hf_model_dir, custom_dict)
|
|
model = cls(config)
|
|
loader.generate_tllm_weights(model)
|
|
return model
|
|
|
|
def save_checkpoint(self, output_dir, save_config=True):
|
|
rank = self.config.mapping.rank
|
|
weights = {
|
|
name: numpy_to_torch(param.raw_value)
|
|
for name, param in self.named_parameters()
|
|
}
|
|
image_newline = {
|
|
"image_newline": numpy_to_torch(self.image_newline.raw_value)
|
|
}
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(output_dir, f'rank{rank}.safetensors'))
|
|
safetensors.torch.save_file(
|
|
image_newline,
|
|
os.path.join(output_dir, f'image_newlines.safetensors'))
|
|
if save_config:
|
|
self.config.to_json_file(os.path.join(output_dir, 'config.json'))
|
|
|
|
def prepare_inputs(self, max_batch_size, **kwargs):
|
|
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
|
|
ranges of the dimensions of when using TRT dynamic shapes.
|
|
|
|
@return: a list contains values which can be fed into the self.forward()
|
|
'''
|
|
|
|
batch_size_range = [
|
|
1, max(1, (max_batch_size + 1) // 2), max_batch_size
|
|
]
|
|
pixel_values = Tensor(
|
|
name='pixel_values',
|
|
dtype=self.config.dtype,
|
|
shape=[
|
|
-1, self.config.num_channels, self.config.image_size,
|
|
self.config.image_size
|
|
],
|
|
dim_range=OrderedDict([
|
|
('batch_size', [batch_size_range]),
|
|
('in_channels', [[self.config.num_channels] * 3]),
|
|
('latent_height', [[self.config.image_size] * 3]),
|
|
('latent_width', [[self.config.image_size] * 3]),
|
|
]))
|
|
return {'pixel_values': pixel_values}
|