TensorRT-LLMs/_modules/tensorrt_llm/layers/embedding.html
2025-11-25 03:40:39 +00:00

1387 lines
134 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en" data-content_root="../../../" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>tensorrt_llm.layers.embedding &#8212; TensorRT LLM</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css?v=8f2a1f02" />
<link rel="stylesheet" type="text/css" href="../../../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css?v=76b2166b" />
<link rel="stylesheet" type="text/css" href="../../../_static/autodoc_pydantic.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/togglebutton.css?v=13237357" />
<link rel="stylesheet" type="text/css" href="../../../_static/custom.css?v=19d20f17" />
<!-- So that users can add custom icons -->
<script src="../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="../../../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../../../_static/doctools.js?v=9a2dae69"></script>
<script src="../../../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../../../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../../../_static/copybutton.js?v=65e89d2a"></script>
<script>let toggleHintShow = 'Click to show';</script>
<script>let toggleHintHide = 'Click to hide';</script>
<script>let toggleOpenOnPrint = 'true';</script>
<script src="../../../_static/togglebutton.js?v=4a39c7ea"></script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/layers/embedding';</script>
<script>
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc4';
DOCUMENTATION_OPTIONS.show_version_warning_banner =
false;
</script>
<link rel="icon" href="../../../_static/favicon.png"/>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="1.2.0rc4" />
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-2"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-2"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-2"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-2">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<a class="navbar-brand logo" href="../../../index.html">
<img src="../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
<p class="title logo__title">TensorRT LLM</p>
</a>
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<div class="version-switcher__container dropdown pst-js-only">
<button id="pst-version-switcher-button-3"
type="button"
class="version-switcher__button btn btn-sm dropdown-toggle"
data-bs-toggle="dropdown"
aria-haspopup="listbox"
aria-controls="pst-version-switcher-list-3"
aria-label="Version switcher list"
>
Choose version <!-- this text may get changed later by javascript -->
<span class="caret"></span>
</button>
<div id="pst-version-switcher-list-3"
class="version-switcher__menu dropdown-menu list-group-flush py-0"
role="listbox" aria-labelledby="pst-version-switcher-button-3">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Table of Contents">
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/containers.html">Pre-built release container images on NGC</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference.html">Generate text</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sparse_attention.html">Sparse Attention</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
</ul>
</details></li>
<li class="toctree-l1"><a class="reference internal" href="../../../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell &amp; Hopper Hardware</a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../models/supported-models.html">Supported Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../models/adding-new-model.html">Adding a New Model</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-bench.html">trtllm-bench</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../commands/trtllm-eval.html">trtllm-eval</a></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
</ul>
</details></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/index.html">LLM API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../llm-api/reference.html">API Reference</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/disagg-serving.html">Disaggregated Serving</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/kvcache.html">KV Cache System</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/long-sequence.html">Long Sequences</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/overlap-scheduler.html">Overlap Scheduler</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/sampling.html">Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/additional-outputs.html">Additional Outputs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/speculative-decoding.html">Speculative Decoding</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/checkpoint-loading.html">Checkpoint Loading</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile &amp; Piecewise CUDA Graph</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/overview.html">Architecture Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/perf-analysis.html">Performance Analysis</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/dev-containers.html">Using Dev Containers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/api-change.html">LLM API Change Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-GramSpeculativeDecodingin TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
</ul>
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
<ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.layers.embedding</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<h1>Source code for tensorrt_llm.layers.embedding</h1><div class="highlight"><pre>
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION &amp; AFFILIATES. All rights reserved.</span>
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
<span class="c1">#</span>
<span class="c1"># Licensed under the Apache License, Version 2.0 (the &quot;License&quot;);</span>
<span class="c1"># you may not use this file except in compliance with the License.</span>
<span class="c1"># You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">math</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.._utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">set_obj_attrs</span><span class="p">,</span> <span class="n">str_dtype_to_torch</span><span class="p">,</span> <span class="n">trt_dtype_to_np</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..functional</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">ACT2FN</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">arange</span><span class="p">,</span> <span class="n">concat</span><span class="p">,</span> <span class="n">constant</span><span class="p">,</span> <span class="n">cos</span><span class="p">,</span> <span class="n">div</span><span class="p">,</span>
<span class="n">embedding</span><span class="p">,</span> <span class="n">exp</span><span class="p">,</span> <span class="n">expand</span><span class="p">,</span> <span class="n">identity</span><span class="p">,</span> <span class="n">meshgrid2d</span><span class="p">,</span> <span class="n">outer</span><span class="p">,</span>
<span class="n">pad</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="n">sin</span><span class="p">,</span> <span class="nb">slice</span><span class="p">,</span> <span class="n">unsqueeze</span><span class="p">,</span> <span class="n">where</span><span class="p">)</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..module</span><span class="w"> </span><span class="kn">import</span> <span class="n">Module</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">..parameter</span><span class="w"> </span><span class="kn">import</span> <span class="n">Parameter</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.linear</span><span class="w"> </span><span class="kn">import</span> <span class="n">ColumnLinear</span><span class="p">,</span> <span class="n">Linear</span><span class="p">,</span> <span class="n">RowLinear</span>
<div class="viewcode-block" id="Embedding">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.Embedding">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">Embedding</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> The embedding layer takes input indices (x) and the embedding lookup table (weight) as input.</span>
<span class="sd"> And output the corresponding embeddings according to input indices.</span>
<span class="sd"> The size of weight is [num_embeddings, embedding_dim]</span>
<span class="sd"> Four parameters (tp_size, tp_group, sharding_dim, tp_rank) are involved in tensor parallelism.</span>
<span class="sd"> Only when &quot;tp_size &gt; 1 and tp_group is not None&quot;, tensor parallelism is enabled.</span>
<span class="sd"> When &quot;sharding_dim == 0&quot;, the weight is shared in the vocabulary dimension.</span>
<span class="sd"> tp_rank must be set when sharding_dim == 0.</span>
<span class="sd"> When &quot;sharding_dim == 1&quot;, the weight is shard in the hidden dimension.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">num_embeddings</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">tp_group</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">list</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">sharding_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># num_embeddings records the total vocab size no matter using TP or not</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_embeddings</span> <span class="o">=</span> <span class="n">num_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding_dim</span> <span class="o">=</span> <span class="n">embedding_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">=</span> <span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span> <span class="o">=</span> <span class="n">tp_group</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sharding_dim</span> <span class="o">=</span> <span class="n">sharding_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span> <span class="o">=</span> <span class="n">tp_rank</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dtype</span> <span class="o">=</span> <span class="n">dtype</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_dim</span> <span class="o">=</span> <span class="n">sharding_dim</span>
<span class="k">if</span> <span class="n">sharding_dim</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_embeddings</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding_dim</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">sharding_dim</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">ceil</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_embeddings</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">),</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="n">shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight_padding_size</span> <span class="o">=</span> <span class="p">((</span><span class="mi">8</span> <span class="o">-</span> <span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">%</span> <span class="mi">8</span><span class="p">)</span> <span class="o">%</span> <span class="mi">8</span><span class="p">,</span> <span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">set_obj_attrs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="p">{</span>
<span class="s2">&quot;weight_loader&quot;</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_loader</span><span class="p">,</span>
<span class="p">})</span>
<div class="viewcode-block" id="Embedding.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.Embedding.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># The embedding weight is padded to the multiple of 8.</span>
<span class="c1"># The reason is that when lm_head and vocab_embedding are using the same embedding weight,</span>
<span class="c1"># previously weights can&#39;t be depulicated in the engine because gemm will pad the weight to the multiple of 8.</span>
<span class="c1"># If we also pad the embedding weight to the multiple of 8, the weights can be successfully deduplicated.</span>
<span class="c1"># This will not affect the input and output of the gather op and perf impact is negligible.</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight_padding_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">padding_values</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">weight_padding_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_np</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">dtype</span><span class="p">))</span>
<span class="n">padding</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">padding_values</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">padding</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">return</span> <span class="n">embedding</span><span class="p">(</span><span class="n">x</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">sharding_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sharding_dim</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="n">padding</span><span class="p">)</span></div>
<div class="viewcode-block" id="Embedding.weight_loader">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.Embedding.weight_loader">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">weight_loader</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">mapping</span><span class="p">:</span> <span class="n">Mapping</span><span class="p">,</span> <span class="n">param</span><span class="p">:</span> <span class="n">Parameter</span><span class="p">,</span>
<span class="n">loaded_weight</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
<span class="c1"># use_parallel_embedding</span>
<span class="n">tp_rank</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_rank</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">sharding_dim</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sharding_dim</span>
<span class="n">shard_size</span> <span class="o">=</span> <span class="n">param</span><span class="o">.</span><span class="n">_shape</span><span class="p">[</span><span class="n">sharding_dim</span><span class="p">]</span>
<span class="n">start_idx</span> <span class="o">=</span> <span class="n">tp_rank</span> <span class="o">*</span> <span class="n">shard_size</span>
<span class="n">loaded_weight</span> <span class="o">=</span> <span class="n">loaded_weight</span><span class="o">.</span><span class="n">narrow</span><span class="p">(</span><span class="n">sharding_dim</span><span class="p">,</span> <span class="n">start_idx</span><span class="p">,</span>
<span class="n">shard_size</span><span class="p">)</span>
<span class="n">param</span><span class="o">.</span><span class="n">value</span> <span class="o">=</span> <span class="n">loaded_weight</span></div>
<div class="viewcode-block" id="Embedding.postprocess">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.Embedding.postprocess">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">postprocess</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tllm_key</span><span class="p">,</span> <span class="n">weights</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">if</span> <span class="n">weights</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="p">{}</span>
<span class="n">weights</span> <span class="o">=</span> <span class="n">weights</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">str_dtype_to_torch</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dtype</span><span class="p">))</span>
<span class="k">return</span> <span class="p">{</span><span class="n">tllm_key</span><span class="p">:</span> <span class="n">weights</span><span class="p">}</span></div>
</div>
<div class="viewcode-block" id="PromptTuningEmbedding">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.PromptTuningEmbedding">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">PromptTuningEmbedding</span><span class="p">(</span><span class="n">Embedding</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> PromptTuningEmbedding handles fine-tuned prompts with virtual tokens. At runtime,</span>
<span class="sd"> a supplementary embedding dictionary is passed. Tokens whose ids are &gt;= vocab_size are embedded</span>
<span class="sd"> with that additional dictionary.</span>
<span class="sd"> The prompt tuning dictionary holds multiple tasks, and each sequence is assigned a given task.</span>
<span class="sd"> Prompt-tuned tokens from a given sequence use the adequate task dictionary, as defined by the `tasks` input.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">num_embeddings</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">vocab_size</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">sharding_dim</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">tp_rank</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">num_embeddings</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="p">,</span> <span class="n">sharding_dim</span><span class="p">,</span> <span class="n">tp_rank</span><span class="p">)</span>
<span class="k">if</span> <span class="n">vocab_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">vocab_size</span> <span class="o">=</span> <span class="n">num_embeddings</span>
<span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span> <span class="o">=</span> <span class="n">vocab_size</span>
<div class="viewcode-block" id="PromptTuningEmbedding.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.PromptTuningEmbedding.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tokens</span><span class="p">,</span> <span class="n">prompt_embedding_table</span><span class="p">,</span> <span class="n">tasks</span><span class="p">,</span> <span class="n">task_vocab_size</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Pass all tokens through both normal and prompt embedding tables.</span>
<span class="sd"> Tokens are masked so that &quot;normal&quot; embedding only see &quot;normal&quot; tokens. Same logic for &quot;prompt&quot; embedding.</span>
<span class="sd"> After those two embedding, combine results based on whether the token was &quot;normal&quot; or &quot;prompt-tuned&quot;.</span>
<span class="sd"> Parameters:</span>
<span class="sd"> tokens : Tensor</span>
<span class="sd"> the ids to embed, size [batch_size, seq_len]</span>
<span class="sd"> prompt_embedding_table : Tensor</span>
<span class="sd"> the additional embedding table for prompt-tuned tokens, size [num_tasks * num_tokens_per_task, hidden_size]</span>
<span class="sd"> tasks: Tensor</span>
<span class="sd"> the task required by each token, size [batch_size, seq_len]</span>
<span class="sd"> task_vocab_size: Tensor</span>
<span class="sd"> the number of tokens used for each task, should be equal to prompt_embedding_table&#39;s num_tokens_per_task, size [1]</span>
<span class="sd"> Returns:</span>
<span class="sd"> Tokens&#39; embedding</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># do not use &quot;&gt;=&quot; because internally the layer works with floating points</span>
<span class="n">prompt_tokens_mask</span> <span class="o">=</span> <span class="n">tokens</span> <span class="o">&gt;</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># clip tokens in the [0, vocab_size) range</span>
<span class="n">normal_tokens</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">prompt_tokens_mask</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">tokens</span><span class="p">)</span>
<span class="n">normal_embeddings</span> <span class="o">=</span> <span class="n">embedding</span><span class="p">(</span><span class="n">normal_tokens</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">value</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sharding_dim</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">tp_rank</span><span class="p">)</span>
<span class="c1"># put virtual tokens in the [0, max_prompt_vocab_size) range</span>
<span class="n">prompt_tokens</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">prompt_tokens_mask</span><span class="p">,</span> <span class="n">tokens</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># add offsets to match the concatenated embedding tables</span>
<span class="n">tasks</span> <span class="o">=</span> <span class="n">tasks</span> <span class="o">*</span> <span class="n">task_vocab_size</span>
<span class="c1"># tasks: [batch_size, seq_len]</span>
<span class="c1"># prompt_tokens: [batch_size, seq_len]</span>
<span class="c1"># if speculative decoding is enabled the shape of prompt_tokens is [batch_size, seq_len + max_draft_len],</span>
<span class="c1"># so we need to expand tasks to [batch_size, seq_len + max_draft_len]</span>
<span class="n">tasks</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">tasks</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">prompt_tokens</span><span class="p">))</span>
<span class="n">prompt_tokens</span> <span class="o">=</span> <span class="n">prompt_tokens</span> <span class="o">+</span> <span class="n">tasks</span>
<span class="n">prompt_embeddings</span> <span class="o">=</span> <span class="n">embedding</span><span class="p">(</span><span class="n">prompt_tokens</span><span class="p">,</span> <span class="n">prompt_embedding_table</span><span class="p">)</span>
<span class="c1"># prompt_tokens_mask: [batch_size, seq_len] -&gt; [batch_size, seq_len, 1]</span>
<span class="c1"># combine the correct sources of embedding: normal/prompt</span>
<span class="k">return</span> <span class="n">where</span><span class="p">(</span><span class="n">unsqueeze</span><span class="p">(</span><span class="n">prompt_tokens_mask</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">),</span> <span class="n">prompt_embeddings</span><span class="p">,</span>
<span class="n">normal_embeddings</span><span class="p">)</span></div>
</div>
<div class="viewcode-block" id="LabelEmbedding">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.LabelEmbedding">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">LabelEmbedding</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">num_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">dropout_prob</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">Mapping</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="n">use_cfg_embedding</span> <span class="o">=</span> <span class="n">dropout_prob</span> <span class="o">&gt;</span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding_table</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">num_classes</span> <span class="o">+</span> <span class="n">use_cfg_embedding</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span> <span class="o">=</span> <span class="n">num_classes</span>
<div class="viewcode-block" id="LabelEmbedding.token_drop">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.LabelEmbedding.token_drop">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">token_drop</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">labels</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">force_drop_ids</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">):</span>
<span class="n">labels</span> <span class="o">=</span> <span class="n">where</span><span class="p">(</span><span class="n">force_drop_ids</span> <span class="o">==</span> <span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_classes</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
<span class="k">return</span> <span class="n">labels</span></div>
<div class="viewcode-block" id="LabelEmbedding.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.LabelEmbedding.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">labels</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">force_drop_ids</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="k">if</span> <span class="n">force_drop_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">labels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">token_drop</span><span class="p">(</span><span class="n">labels</span><span class="p">,</span> <span class="n">force_drop_ids</span><span class="p">)</span>
<span class="n">embeddings</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding_table</span><span class="p">(</span><span class="n">labels</span><span class="p">)</span>
<span class="k">return</span> <span class="n">embeddings</span></div>
</div>
<div class="viewcode-block" id="get_1d_sincos_pos_embed_from_grid">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.get_1d_sincos_pos_embed_from_grid">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_1d_sincos_pos_embed_from_grid</span><span class="p">(</span><span class="n">embed_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">pos</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">):</span>
<span class="k">if</span> <span class="n">embed_dim</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;embed_dim must be divisible by 2&quot;</span><span class="p">)</span>
<span class="n">omega</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">embed_dim</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float64</span><span class="p">)</span>
<span class="n">omega</span> <span class="o">/=</span> <span class="n">embed_dim</span> <span class="o">/</span> <span class="mf">2.0</span>
<span class="n">omega</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">/</span> <span class="mi">10000</span><span class="o">**</span><span class="n">omega</span> <span class="c1"># (D/2,)</span>
<span class="n">omega</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">omega</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">))</span>
<span class="n">pos</span> <span class="o">=</span> <span class="n">pos</span><span class="o">.</span><span class="n">view</span><span class="p">([</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="c1"># (M,)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">outer</span><span class="p">(</span><span class="n">pos</span><span class="p">,</span> <span class="n">omega</span><span class="p">)</span> <span class="c1"># (M, D/2), outer product</span>
<span class="n">emb_sin</span> <span class="o">=</span> <span class="n">sin</span><span class="p">(</span><span class="n">out</span><span class="p">)</span> <span class="c1"># (M, D/2)</span>
<span class="n">emb_cos</span> <span class="o">=</span> <span class="n">cos</span><span class="p">(</span><span class="n">out</span><span class="p">)</span> <span class="c1"># (M, D/2)</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">emb_sin</span><span class="p">,</span> <span class="n">emb_cos</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># (M, D)</span>
<span class="k">return</span> <span class="n">emb</span></div>
<div class="viewcode-block" id="get_2d_sincos_pos_embed_from_grid">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.get_2d_sincos_pos_embed_from_grid">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_2d_sincos_pos_embed_from_grid</span><span class="p">(</span><span class="n">embed_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">grid</span><span class="p">:</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">Tensor</span><span class="p">]):</span>
<span class="k">if</span> <span class="n">embed_dim</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;embed_dim must be divisible by 2&quot;</span><span class="p">)</span>
<span class="c1"># use half of dimensions to encode grid_h</span>
<span class="n">emb_h</span> <span class="o">=</span> <span class="n">get_1d_sincos_pos_embed_from_grid</span><span class="p">(</span><span class="n">embed_dim</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
<span class="n">grid</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="c1"># (H*W, D/2)</span>
<span class="n">emb_w</span> <span class="o">=</span> <span class="n">get_1d_sincos_pos_embed_from_grid</span><span class="p">(</span><span class="n">embed_dim</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
<span class="n">grid</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span> <span class="c1"># (H*W, D/2)</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">emb_h</span><span class="p">,</span> <span class="n">emb_w</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># (H*W, D)</span>
<span class="k">return</span> <span class="n">emb</span></div>
<div class="viewcode-block" id="get_2d_sincos_pos_embed">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.get_2d_sincos_pos_embed">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_2d_sincos_pos_embed</span><span class="p">(</span>
<span class="n">embed_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">grid_size</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="nb">int</span><span class="p">]],</span>
<span class="n">cls_token</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">extra_tokens</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span>
<span class="n">interpolation_scale</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span>
<span class="n">base_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span><span class="p">,</span>
<span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">grid_size</span><span class="p">,</span> <span class="nb">int</span><span class="p">):</span>
<span class="n">grid_size</span> <span class="o">=</span> <span class="p">(</span><span class="n">grid_size</span><span class="p">,</span> <span class="n">grid_size</span><span class="p">)</span>
<span class="n">grid_h</span> <span class="o">=</span> <span class="n">div</span><span class="p">(</span>
<span class="n">div</span><span class="p">(</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">grid_size</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="s1">&#39;float32&#39;</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">grid_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">/</span> <span class="n">base_size</span><span class="p">)),</span> <span class="n">interpolation_scale</span><span class="p">)</span>
<span class="n">grid_w</span> <span class="o">=</span> <span class="n">div</span><span class="p">(</span>
<span class="n">div</span><span class="p">(</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">grid_size</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="s1">&#39;float32&#39;</span><span class="p">),</span>
<span class="nb">float</span><span class="p">(</span><span class="n">grid_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">/</span> <span class="n">base_size</span><span class="p">)),</span> <span class="n">interpolation_scale</span><span class="p">)</span>
<span class="n">grid_h</span><span class="p">,</span> <span class="n">grid_w</span> <span class="o">=</span> <span class="n">meshgrid2d</span><span class="p">(</span><span class="n">grid_w</span><span class="p">,</span> <span class="n">grid_h</span><span class="p">)</span> <span class="c1"># here w goes first</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="n">get_2d_sincos_pos_embed_from_grid</span><span class="p">(</span><span class="n">embed_dim</span><span class="p">,</span> <span class="p">[</span>
<span class="n">grid_h</span><span class="o">.</span><span class="n">view</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="n">grid_size</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">grid_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]]),</span>
<span class="n">grid_w</span><span class="o">.</span><span class="n">view</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="n">grid_size</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">grid_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]])</span>
<span class="p">])</span>
<span class="k">if</span> <span class="n">cls_token</span> <span class="ow">and</span> <span class="n">extra_tokens</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span>
<span class="n">constant</span><span class="p">(</span>
<span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">extra_tokens</span><span class="p">,</span> <span class="n">embed_dim</span><span class="p">),</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">trt_dtype_to_np</span><span class="p">(</span><span class="n">pos_embed</span><span class="o">.</span><span class="n">dtype</span><span class="p">))),</span> <span class="n">pos_embed</span>
<span class="p">],</span>
<span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">return</span> <span class="n">pos_embed</span></div>
<div class="viewcode-block" id="SD3PatchEmbed">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.SD3PatchEmbed">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">SD3PatchEmbed</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> 2D Image to Patch Embedding with support for SD3 cropping.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">height</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">224</span><span class="p">,</span>
<span class="n">width</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">224</span><span class="p">,</span>
<span class="n">patch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span><span class="p">,</span>
<span class="n">in_channels</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span>
<span class="n">embed_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">768</span><span class="p">,</span>
<span class="n">layer_norm</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">flatten</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">bias</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">interpolation_scale</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">pos_embed_type</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;sincos&quot;</span><span class="p">,</span>
<span class="n">pos_embed_max_size</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="c1"># For SD3 cropping</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">diffusers.models.embeddings</span><span class="w"> </span><span class="kn">import</span> \
<span class="n">get_2d_sincos_pos_embed</span> <span class="k">as</span> <span class="n">get_2d_sincos_pos_embed_torch</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.conv</span><span class="w"> </span><span class="kn">import</span> <span class="n">Conv2d</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">.normalization</span><span class="w"> </span><span class="kn">import</span> <span class="n">LayerNorm</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="n">num_patches</span> <span class="o">=</span> <span class="p">(</span><span class="n">height</span> <span class="o">//</span> <span class="n">patch_size</span><span class="p">)</span> <span class="o">*</span> <span class="p">(</span><span class="n">width</span> <span class="o">//</span> <span class="n">patch_size</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flatten</span> <span class="o">=</span> <span class="n">flatten</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span> <span class="o">=</span> <span class="n">layer_norm</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span> <span class="o">=</span> <span class="n">pos_embed_max_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">proj</span> <span class="o">=</span> <span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span>
<span class="n">embed_dim</span><span class="p">,</span>
<span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">stride</span><span class="o">=</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">bias</span><span class="o">=</span><span class="n">bias</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="n">layer_norm</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">embed_dim</span><span class="p">,</span>
<span class="n">elementwise_affine</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">eps</span><span class="o">=</span><span class="mf">1e-6</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">norm</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_size</span> <span class="o">=</span> <span class="n">patch_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">height</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">width</span> <span class="o">=</span> <span class="n">height</span> <span class="o">//</span> <span class="n">patch_size</span><span class="p">,</span> <span class="n">width</span> <span class="o">//</span> <span class="n">patch_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">base_size</span> <span class="o">=</span> <span class="n">height</span> <span class="o">//</span> <span class="n">patch_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">interpolation_scale</span> <span class="o">=</span> <span class="n">interpolation_scale</span>
<span class="c1"># Calculate positional embeddings based on max size or default</span>
<span class="k">if</span> <span class="n">pos_embed_max_size</span><span class="p">:</span>
<span class="n">grid_size</span> <span class="o">=</span> <span class="n">pos_embed_max_size</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">grid_size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">num_patches</span><span class="o">**</span><span class="mf">0.5</span><span class="p">)</span>
<span class="k">if</span> <span class="n">pos_embed_type</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pos_embed</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">elif</span> <span class="n">pos_embed_type</span> <span class="o">==</span> <span class="s2">&quot;sincos&quot;</span><span class="p">:</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="n">get_2d_sincos_pos_embed_torch</span><span class="p">(</span>
<span class="n">embed_dim</span><span class="p">,</span>
<span class="n">grid_size</span><span class="p">,</span>
<span class="n">base_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">base_size</span><span class="p">,</span>
<span class="n">interpolation_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">interpolation_scale</span><span class="p">,</span>
<span class="n">output_type</span><span class="o">=</span><span class="s2">&quot;pt&quot;</span><span class="p">,</span>
<span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pos_embed</span> <span class="o">=</span> <span class="n">Parameter</span><span class="p">(</span>
<span class="n">pos_embed</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">float</span><span class="p">()</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Unsupported pos_embed_type: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_type</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span>
<div class="viewcode-block" id="SD3PatchEmbed.cropped_pos_embed">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.SD3PatchEmbed.cropped_pos_embed">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">cropped_pos_embed</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Crops positional embeddings for SD3 compatibility.&quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;`pos_embed_max_size` must be set for cropping.&quot;</span><span class="p">)</span>
<span class="n">height</span> <span class="o">=</span> <span class="n">height</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_size</span>
<span class="n">width</span> <span class="o">=</span> <span class="n">width</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_size</span>
<span class="k">if</span> <span class="n">height</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Height (</span><span class="si">{</span><span class="n">height</span><span class="si">}</span><span class="s2">) cannot be greater than `pos_embed_max_size`: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="si">}</span><span class="s2">.&quot;</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">width</span> <span class="o">&gt;</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span>
<span class="sa">f</span><span class="s2">&quot;Width (</span><span class="si">{</span><span class="n">width</span><span class="si">}</span><span class="s2">) cannot be greater than `pos_embed_max_size`: </span><span class="si">{</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="si">}</span><span class="s2">.&quot;</span>
<span class="p">)</span>
<span class="n">top</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span> <span class="o">-</span> <span class="n">height</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span>
<span class="n">left</span> <span class="o">=</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span> <span class="o">-</span> <span class="n">width</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span>
<span class="n">spatial_pos_embed</span> <span class="o">=</span> <span class="n">identity</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed</span><span class="o">.</span><span class="n">value</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">spatial_pos_embed</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">spatial_pos_embed</span><span class="p">,</span>
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="n">top</span><span class="p">,</span> <span class="n">left</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
<span class="n">sizes</span><span class="o">=</span><span class="n">concat</span><span class="p">([</span>
<span class="n">shape</span><span class="p">(</span><span class="n">spatial_pos_embed</span><span class="p">,</span> <span class="mi">0</span><span class="p">),</span> <span class="n">height</span><span class="p">,</span>
<span class="n">width</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">spatial_pos_embed</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="p">]))</span>
<span class="n">spatial_pos_embed</span> <span class="o">=</span> <span class="n">spatial_pos_embed</span><span class="o">.</span><span class="n">view</span><span class="p">(</span>
<span class="n">concat</span><span class="p">(</span>
<span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span>
<span class="n">shape</span><span class="p">(</span><span class="n">spatial_pos_embed</span><span class="p">,</span>
<span class="n">spatial_pos_embed</span><span class="o">.</span><span class="n">ndim</span><span class="p">()</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)]))</span>
<span class="k">return</span> <span class="n">spatial_pos_embed</span></div>
<div class="viewcode-block" id="SD3PatchEmbed.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.SD3PatchEmbed.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">latent</span><span class="p">):</span>
<span class="c1"># [TODO] to support height and width for runtime</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">height</span><span class="p">,</span> <span class="n">width</span> <span class="o">=</span> <span class="n">latent</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">:]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">height</span><span class="p">,</span> <span class="n">width</span> <span class="o">=</span> <span class="n">latent</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">]</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">latent</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span>
<span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">//</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_size</span>
<span class="n">latent</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">proj</span><span class="p">(</span><span class="n">latent</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">flatten</span><span class="p">:</span>
<span class="n">latent</span> <span class="o">=</span> <span class="n">latent</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="c1"># BCHW -&gt; BNC</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">:</span>
<span class="n">latent</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">latent</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">latent</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">latent</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># Interpolate or crop positional embeddings as needed</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed_max_size</span><span class="p">:</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cropped_pos_embed</span><span class="p">(</span><span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">height</span> <span class="o">!=</span> <span class="n">height</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">width</span> <span class="o">!=</span> <span class="n">width</span><span class="p">:</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="n">get_2d_sincos_pos_embed</span><span class="p">(</span>
<span class="n">embed_dim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">pos_embed</span><span class="o">.</span><span class="n">value</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
<span class="n">grid_size</span><span class="o">=</span><span class="p">(</span><span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">),</span>
<span class="n">base_size</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">base_size</span><span class="p">,</span>
<span class="n">interpolation_scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">interpolation_scale</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">pos_embed</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pos_embed</span><span class="o">.</span><span class="n">value</span>
<span class="n">pos_embed</span> <span class="o">=</span> <span class="n">pos_embed</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">latent</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="p">(</span><span class="n">latent</span> <span class="o">+</span> <span class="n">pos_embed</span><span class="p">)</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">latent</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span></div>
</div>
<div class="viewcode-block" id="get_timestep_embedding">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.get_timestep_embedding">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">get_timestep_embedding</span><span class="p">(</span>
<span class="n">timesteps</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">flip_sin_to_cos</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">downscale_freq_shift</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">scale</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span>
<span class="n">max_period</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10000</span><span class="p">,</span>
<span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.</span>
<span class="sd"> Args</span>
<span class="sd"> timesteps (Tensor):</span>
<span class="sd"> a 1-D Tensor of N indices, one per batch element. These may be fractional.</span>
<span class="sd"> embedding_dim (int):</span>
<span class="sd"> the dimension of the output.</span>
<span class="sd"> flip_sin_to_cos (bool):</span>
<span class="sd"> Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)</span>
<span class="sd"> downscale_freq_shift (float):</span>
<span class="sd"> Controls the delta between frequencies between dimensions</span>
<span class="sd"> scale (float):</span>
<span class="sd"> Scaling factor applied to the embeddings.</span>
<span class="sd"> max_period (int):</span>
<span class="sd"> Controls the maximum frequency of the embeddings</span>
<span class="sd"> Returns</span>
<span class="sd"> Tensor: an [N x dim] Tensor of positional embeddings.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">timesteps</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">,</span> <span class="s2">&quot;Timesteps should be a 1d-array&quot;</span>
<span class="n">half_dim</span> <span class="o">=</span> <span class="n">embedding_dim</span> <span class="o">//</span> <span class="mi">2</span>
<span class="n">exponent</span> <span class="o">=</span> <span class="o">-</span><span class="n">math</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">max_period</span><span class="p">)</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span>
<span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">stop</span><span class="o">=</span><span class="n">half_dim</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">exponent</span> <span class="o">=</span> <span class="n">exponent</span> <span class="o">/</span> <span class="p">(</span><span class="n">half_dim</span> <span class="o">-</span> <span class="n">downscale_freq_shift</span><span class="p">)</span>
<span class="n">exponent</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span><span class="n">exponent</span><span class="p">)</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">exp</span><span class="p">(</span><span class="n">exponent</span><span class="p">)</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">timesteps</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span> <span class="o">*</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">emb</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># scale embeddings</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">scale</span> <span class="o">*</span> <span class="n">emb</span>
<span class="c1"># flip sine and cosine embeddings</span>
<span class="k">if</span> <span class="n">flip_sin_to_cos</span><span class="p">:</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">cos</span><span class="p">(</span><span class="n">emb</span><span class="p">),</span> <span class="n">sin</span><span class="p">(</span><span class="n">emb</span><span class="p">)],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="n">sin</span><span class="p">(</span><span class="n">emb</span><span class="p">),</span> <span class="n">cos</span><span class="p">(</span><span class="n">emb</span><span class="p">)],</span> <span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># zero pad</span>
<span class="k">if</span> <span class="n">embedding_dim</span> <span class="o">%</span> <span class="mi">2</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">pad</span><span class="p">(</span><span class="n">emb</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">))</span>
<span class="k">return</span> <span class="n">emb</span></div>
<div class="viewcode-block" id="TimestepEmbedding">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.TimestepEmbedding">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">TimestepEmbedding</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">in_channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">time_embed_dim</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">act_fn</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">&quot;silu&quot;</span><span class="p">,</span>
<span class="n">out_dim</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">post_act_fn</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
<span class="n">cond_proj_dim</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">sample_proj_bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="n">tp_group</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span>
<span class="n">tp_size</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">linear_1</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span>
<span class="n">time_embed_dim</span><span class="p">,</span>
<span class="n">sample_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">if</span> <span class="n">cond_proj_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cond_proj</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">cond_proj_dim</span><span class="p">,</span>
<span class="n">in_channels</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">cond_proj</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">act</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="n">act_fn</span><span class="p">]</span>
<span class="k">if</span> <span class="n">out_dim</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">time_embed_dim_out</span> <span class="o">=</span> <span class="n">out_dim</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">time_embed_dim_out</span> <span class="o">=</span> <span class="n">time_embed_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">linear_2</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">time_embed_dim</span><span class="p">,</span>
<span class="n">time_embed_dim_out</span><span class="p">,</span>
<span class="n">sample_proj_bias</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">if</span> <span class="n">post_act_fn</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">post_act</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">post_act</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="n">post_act_fn</span><span class="p">]</span>
<div class="viewcode-block" id="TimestepEmbedding.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.TimestepEmbedding.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">sample</span><span class="p">,</span> <span class="n">condition</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">if</span> <span class="n">condition</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">sample</span> <span class="o">=</span> <span class="n">sample</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">cond_proj</span><span class="p">(</span><span class="n">condition</span><span class="p">)</span>
<span class="n">sample</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear_1</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">act</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">sample</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="n">sample</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear_2</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">post_act</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">sample</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">post_act</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span>
<span class="k">return</span> <span class="n">sample</span></div>
</div>
<div class="viewcode-block" id="Timesteps">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.Timesteps">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">Timesteps</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">num_channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="n">flip_sin_to_cos</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="n">downscale_freq_shift</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span>
<span class="n">scale</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_channels</span> <span class="o">=</span> <span class="n">num_channels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flip_sin_to_cos</span> <span class="o">=</span> <span class="n">flip_sin_to_cos</span>
<span class="bp">self</span><span class="o">.</span><span class="n">downscale_freq_shift</span> <span class="o">=</span> <span class="n">downscale_freq_shift</span>
<span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">scale</span>
<div class="viewcode-block" id="Timesteps.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.Timesteps.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timesteps</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
<span class="n">t_emb</span> <span class="o">=</span> <span class="n">get_timestep_embedding</span><span class="p">(</span>
<span class="n">timesteps</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_channels</span><span class="p">,</span>
<span class="n">flip_sin_to_cos</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">flip_sin_to_cos</span><span class="p">,</span>
<span class="n">downscale_freq_shift</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">downscale_freq_shift</span><span class="p">,</span>
<span class="n">scale</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">scale</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">t_emb</span></div>
</div>
<div class="viewcode-block" id="PixArtAlphaTextProjection">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.PixArtAlphaTextProjection">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">PixArtAlphaTextProjection</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Projects caption embeddings. Also handles dropout for classifier-free guidance.</span>
<span class="sd"> Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">in_features</span><span class="p">,</span>
<span class="n">hidden_size</span><span class="p">,</span>
<span class="n">out_features</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">act_fn</span><span class="o">=</span><span class="s2">&quot;gelu_tanh&quot;</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="k">if</span> <span class="n">out_features</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">out_features</span> <span class="o">=</span> <span class="n">hidden_size</span>
<span class="n">tp_group</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span>
<span class="n">tp_size</span> <span class="o">=</span> <span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span>
<span class="bp">self</span><span class="o">.</span><span class="n">linear_1</span> <span class="o">=</span> <span class="n">ColumnLinear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="n">in_features</span><span class="p">,</span>
<span class="n">out_features</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">gather_output</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">act_1</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="n">act_fn</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">linear_2</span> <span class="o">=</span> <span class="n">RowLinear</span><span class="p">(</span><span class="n">in_features</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
<span class="n">out_features</span><span class="o">=</span><span class="n">out_features</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="PixArtAlphaTextProjection.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.PixArtAlphaTextProjection.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">caption</span><span class="p">):</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear_1</span><span class="p">(</span><span class="n">caption</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act_1</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear_2</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
<span class="k">return</span> <span class="n">hidden_states</span></div>
</div>
<div class="viewcode-block" id="CombinedTimestepTextProjEmbeddings">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.CombinedTimestepTextProjEmbeddings">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">CombinedTimestepTextProjEmbeddings</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">pooled_projection_dim</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">Mapping</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">time_proj</span> <span class="o">=</span> <span class="n">Timesteps</span><span class="p">(</span><span class="n">num_channels</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">flip_sin_to_cos</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">downscale_freq_shift</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">timestep_embedder</span> <span class="o">=</span> <span class="n">TimestepEmbedding</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">time_embed_dim</span><span class="o">=</span><span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">text_embedder</span> <span class="o">=</span> <span class="n">PixArtAlphaTextProjection</span><span class="p">(</span><span class="n">pooled_projection_dim</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">act_fn</span><span class="o">=</span><span class="s2">&quot;silu&quot;</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="CombinedTimestepTextProjEmbeddings.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.CombinedTimestepTextProjEmbeddings.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timestep</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">pooled_projection</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">):</span>
<span class="n">timesteps_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">time_proj</span><span class="p">(</span><span class="n">timestep</span><span class="p">)</span>
<span class="n">timesteps_emb</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">timestep_embedder</span><span class="p">(</span>
<span class="n">timesteps_proj</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="n">pooled_projection</span><span class="o">.</span><span class="n">dtype</span><span class="p">))</span> <span class="c1"># (N, D)</span>
<span class="n">pooled_projections</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">text_embedder</span><span class="p">(</span><span class="n">pooled_projection</span><span class="p">)</span>
<span class="n">conditioning</span> <span class="o">=</span> <span class="n">timesteps_emb</span> <span class="o">+</span> <span class="n">pooled_projections</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_network_output</span><span class="p">(</span><span class="s1">&#39;output&#39;</span><span class="p">,</span> <span class="n">conditioning</span><span class="p">)</span>
<span class="k">return</span> <span class="n">conditioning</span></div>
</div>
<div class="viewcode-block" id="CombinedTimestepLabelEmbeddings">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.CombinedTimestepLabelEmbeddings">[docs]</a>
<span class="k">class</span><span class="w"> </span><span class="nc">CombinedTimestepLabelEmbeddings</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">num_classes</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">class_dropout_prob</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">Mapping</span><span class="p">(),</span>
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">time_proj</span> <span class="o">=</span> <span class="n">Timesteps</span><span class="p">(</span><span class="n">num_channels</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">flip_sin_to_cos</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">downscale_freq_shift</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">timestep_embedder</span> <span class="o">=</span> <span class="n">TimestepEmbedding</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">256</span><span class="p">,</span>
<span class="n">time_embed_dim</span><span class="o">=</span><span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">class_embedder</span> <span class="o">=</span> <span class="n">LabelEmbedding</span><span class="p">(</span><span class="n">num_classes</span><span class="p">,</span>
<span class="n">embedding_dim</span><span class="p">,</span>
<span class="n">class_dropout_prob</span><span class="p">,</span>
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
<div class="viewcode-block" id="CombinedTimestepLabelEmbeddings.forward">
<a class="viewcode-back" href="../../../legacy/python-api/tensorrt_llm.layers.html#tensorrt_llm.layers.embedding.CombinedTimestepLabelEmbeddings.forward">[docs]</a>
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
<span class="n">timestep</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">class_labels</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span>
<span class="n">hidden_dtype</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="s1">&#39;float32&#39;</span><span class="p">):</span>
<span class="n">timesteps_proj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">time_proj</span><span class="p">(</span><span class="n">timestep</span><span class="p">)</span>
<span class="n">timesteps_emb</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">timestep_embedder</span><span class="p">(</span>
<span class="n">timesteps_proj</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="n">hidden_dtype</span><span class="p">))</span> <span class="c1"># (N, D)</span>
<span class="n">class_labels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">class_embedder</span><span class="p">(</span><span class="n">class_labels</span><span class="p">)</span> <span class="c1"># (N, D)</span>
<span class="n">conditioning</span> <span class="o">=</span> <span class="n">timesteps_emb</span> <span class="o">+</span> <span class="n">class_labels</span> <span class="c1"># (N, D)</span>
<span class="k">return</span> <span class="n">conditioning</span></div>
</div>
</pre></div>
</article>
<footer class="prev-next-footer d-print-none">
<div class="prev-next-area">
</div>
</footer>
</div>
<div class="bd-sidebar-secondary"></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<a class="footer-brand logo" href="https://www.nvidia.com">
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
<img src="../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
</a></div>
<div class="footer-item">
<div class="footer-links">
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
</div>
</div>
<div class="footer-item">
<p class="copyright">
Copyright © 2025, NVidia.
<br/>
</p>
</div>
<div class="footer-item">
<div class="extra_footer">
<p>Last updated on November 23, 2025.</p>
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/a761585">a761585</a>.</p>
</div></div>
</div>
</div>
</footer>
</body>
</html>