mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
1202 lines
111 KiB
HTML
1202 lines
111 KiB
HTML
|
||
|
||
<!DOCTYPE html>
|
||
|
||
|
||
<html lang="en" data-content_root="../../../../" >
|
||
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||
<title>tensorrt_llm.models.bert.model — TensorRT LLM</title>
|
||
|
||
|
||
|
||
<script data-cfasync="false">
|
||
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
|
||
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
|
||
</script>
|
||
<!--
|
||
this give us a css class that will be invisible only if js is disabled
|
||
-->
|
||
<noscript>
|
||
<style>
|
||
.pst-js-only { display: none !important; }
|
||
|
||
</style>
|
||
</noscript>
|
||
|
||
<!-- Loaded before other Sphinx assets -->
|
||
<link href="../../../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
||
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
||
|
||
<link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css?v=8f2a1f02" />
|
||
<link rel="stylesheet" type="text/css" href="../../../../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
|
||
<link rel="stylesheet" type="text/css" href="../../../../_static/copybutton.css?v=76b2166b" />
|
||
<link rel="stylesheet" type="text/css" href="../../../../_static/autodoc_pydantic.css" />
|
||
<link rel="stylesheet" type="text/css" href="../../../../_static/togglebutton.css?v=13237357" />
|
||
<link rel="stylesheet" type="text/css" href="../../../../_static/custom.css?v=19d20f17" />
|
||
|
||
<!-- So that users can add custom icons -->
|
||
<script src="../../../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
|
||
<!-- Pre-loaded scripts that we'll load fully later -->
|
||
<link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
|
||
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
|
||
|
||
|
||
|
||
<script src="../../../../_static/documentation_options.js?v=5929fcd5"></script>
|
||
<script src="../../../../_static/doctools.js?v=9a2dae69"></script>
|
||
<script src="../../../../_static/sphinx_highlight.js?v=dc90522c"></script>
|
||
<script src="../../../../_static/clipboard.min.js?v=a7894cd8"></script>
|
||
<script src="../../../../_static/copybutton.js?v=65e89d2a"></script>
|
||
<script>let toggleHintShow = 'Click to show';</script>
|
||
<script>let toggleHintHide = 'Click to hide';</script>
|
||
<script>let toggleOpenOnPrint = 'true';</script>
|
||
<script src="../../../../_static/togglebutton.js?v=4a39c7ea"></script>
|
||
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
|
||
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
|
||
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/tensorrt_llm/models/bert/model';</script>
|
||
<script>
|
||
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
|
||
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
|
||
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc4';
|
||
DOCUMENTATION_OPTIONS.show_version_warning_banner =
|
||
false;
|
||
</script>
|
||
|
||
<link rel="icon" href="../../../../_static/favicon.png"/>
|
||
|
||
<link rel="index" title="Index" href="../../../../genindex.html" />
|
||
<link rel="search" title="Search" href="../../../../search.html" />
|
||
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
||
<meta name="docsearch:language" content="en"/>
|
||
<meta name="docsearch:version" content="1.2.0rc4" />
|
||
|
||
|
||
</head>
|
||
|
||
|
||
|
||
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
|
||
|
||
|
||
|
||
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
|
||
|
||
|
||
|
||
<div id="pst-scroll-pixel-helper"></div>
|
||
|
||
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
|
||
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
|
||
|
||
|
||
<dialog id="pst-search-dialog">
|
||
|
||
<form class="bd-search d-flex align-items-center"
|
||
action="../../../../search.html"
|
||
method="get">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<input type="search"
|
||
class="form-control"
|
||
name="q"
|
||
placeholder="Search the docs ..."
|
||
aria-label="Search the docs ..."
|
||
autocomplete="off"
|
||
autocorrect="off"
|
||
autocapitalize="off"
|
||
spellcheck="false"/>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
|
||
</form>
|
||
</dialog>
|
||
|
||
<div class="pst-async-banner-revealer d-none">
|
||
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
|
||
</div>
|
||
|
||
|
||
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
|
||
<div class="bd-header__inner bd-page-width">
|
||
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
|
||
<span class="fa-solid fa-bars"></span>
|
||
</button>
|
||
|
||
|
||
<div class="col-lg-3 navbar-header-items__start">
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
|
||
|
||
|
||
<a class="navbar-brand logo" href="../../../../index.html">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<img src="../../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
|
||
<img src="../../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
|
||
|
||
|
||
<p class="title logo__title">TensorRT LLM</p>
|
||
|
||
</a></div>
|
||
|
||
</div>
|
||
|
||
<div class="col-lg-9 navbar-header-items">
|
||
|
||
<div class="me-auto navbar-header-items__center">
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
<div class="version-switcher__container dropdown pst-js-only">
|
||
<button id="pst-version-switcher-button-2"
|
||
type="button"
|
||
class="version-switcher__button btn btn-sm dropdown-toggle"
|
||
data-bs-toggle="dropdown"
|
||
aria-haspopup="listbox"
|
||
aria-controls="pst-version-switcher-list-2"
|
||
aria-label="Version switcher list"
|
||
>
|
||
Choose version <!-- this text may get changed later by javascript -->
|
||
<span class="caret"></span>
|
||
</button>
|
||
<div id="pst-version-switcher-list-2"
|
||
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
||
role="listbox" aria-labelledby="pst-version-switcher-button-2">
|
||
<!-- dropdown will be populated by javascript on page load -->
|
||
</div>
|
||
</div></div>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="navbar-header-items__end">
|
||
|
||
<div class="navbar-item navbar-persistent--container">
|
||
|
||
|
||
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<span class="search-button__default-text">Search</span>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
||
</button>
|
||
</div>
|
||
|
||
|
||
<div class="navbar-item">
|
||
|
||
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
||
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
||
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
||
</button></div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="navbar-persistent--mobile">
|
||
|
||
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<span class="search-button__default-text">Search</span>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
||
</button>
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</header>
|
||
|
||
|
||
<div class="bd-container">
|
||
<div class="bd-container__inner bd-page-width">
|
||
|
||
|
||
|
||
<dialog id="pst-primary-sidebar-modal"></dialog>
|
||
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a class="navbar-brand logo" href="../../../../index.html">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<img src="../../../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
|
||
<img src="../../../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
|
||
|
||
|
||
<p class="title logo__title">TensorRT LLM</p>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
<div class="sidebar-header-items sidebar-primary__section">
|
||
|
||
|
||
<div class="sidebar-header-items__center">
|
||
|
||
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
<div class="version-switcher__container dropdown pst-js-only">
|
||
<button id="pst-version-switcher-button-3"
|
||
type="button"
|
||
class="version-switcher__button btn btn-sm dropdown-toggle"
|
||
data-bs-toggle="dropdown"
|
||
aria-haspopup="listbox"
|
||
aria-controls="pst-version-switcher-list-3"
|
||
aria-label="Version switcher list"
|
||
>
|
||
Choose version <!-- this text may get changed later by javascript -->
|
||
<span class="caret"></span>
|
||
</button>
|
||
<div id="pst-version-switcher-list-3"
|
||
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
||
role="listbox" aria-labelledby="pst-version-switcher-button-3">
|
||
<!-- dropdown will be populated by javascript on page load -->
|
||
</div>
|
||
</div></div>
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-header-items__end">
|
||
|
||
<div class="navbar-item">
|
||
|
||
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
||
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
||
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
||
</button></div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div class="sidebar-primary-items__start sidebar-primary__section">
|
||
<div class="sidebar-primary-item">
|
||
|
||
|
||
|
||
<nav class="bd-docs-nav bd-links"
|
||
aria-label="Table of Contents">
|
||
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
|
||
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../overview.html">Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../quick-start-guide.html">Quick Start Guide</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../installation/containers.html">Pre-built release container images on NGC</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference.html">Generate text</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_async.html">Generate text asynchronously</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_sparse_attention.html">Sparse Attention</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_chat_client.html">Curl Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/curl_completion_client.html">Curl Completion Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/genai_perf_client.html">Genai Perf Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../models/supported-models.html">Supported Models</a></li>
|
||
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../models/adding-new-model.html">Adding a New Model</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-bench.html">trtllm-bench</a></li>
|
||
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../commands/trtllm-eval.html">trtllm-eval</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../../../../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../../../../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/index.html">LLM API Introduction</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../llm-api/reference.html">API Reference</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/feature-combination-matrix.html">Feature Combination Matrix</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/disagg-serving.html">Disaggregated Serving</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/kvcache.html">KV Cache System</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/long-sequence.html">Long Sequences</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/lora.html">LoRA (Low-Rank Adaptation)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/overlap-scheduler.html">Overlap Scheduler</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/parallel-strategy.html">Parallelism in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/quantization.html">Quantization</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/sampling.html">Sampling</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/additional-outputs.html">Additional Outputs</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/speculative-decoding.html">Speculative Decoding</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/checkpoint-loading.html">Checkpoint Loading</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../features/torch_compile_and_piecewise_cuda_graph.html">Torch Compile & Piecewise CUDA Graph</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/overview.html">Architecture Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/perf-analysis.html">Performance Analysis</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/dev-containers.html">Using Dev Containers</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/api-change.html">LLM API Change Guide</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-Gram Speculative Decoding in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
|
||
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
|
||
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
|
||
</ul>
|
||
</div>
|
||
</nav></div>
|
||
</div>
|
||
|
||
|
||
<div class="sidebar-primary-items__end sidebar-primary__section">
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
<main id="main-content" class="bd-main" role="main">
|
||
|
||
|
||
<div class="bd-content">
|
||
<div class="bd-article-container">
|
||
|
||
<div class="bd-header-article d-print-none">
|
||
<div class="header-article-items header-article__inner">
|
||
|
||
<div class="header-article-items__start">
|
||
|
||
<div class="header-article-item">
|
||
|
||
<nav aria-label="Breadcrumb" class="d-print-none">
|
||
<ul class="bd-breadcrumbs">
|
||
|
||
<li class="breadcrumb-item breadcrumb-home">
|
||
<a href="../../../../index.html" class="nav-link" aria-label="Home">
|
||
<i class="fa-solid fa-home"></i>
|
||
</a>
|
||
</li>
|
||
|
||
<li class="breadcrumb-item"><a href="../../../index.html" class="nav-link">Module code</a></li>
|
||
|
||
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">tensorrt_llm.models.bert.model</span></li>
|
||
</ul>
|
||
</nav>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
|
||
<div id="searchbox"></div>
|
||
<article class="bd-article">
|
||
|
||
<h1>Source code for tensorrt_llm.models.bert.model</h1><div class="highlight"><pre>
|
||
<span></span><span class="c1"># SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.</span>
|
||
<span class="c1"># SPDX-License-Identifier: Apache-2.0</span>
|
||
<span class="c1">#</span>
|
||
<span class="c1"># Licensed under the Apache License, Version 2.0 (the "License");</span>
|
||
<span class="c1"># you may not use this file except in compliance with the License.</span>
|
||
<span class="c1"># You may obtain a copy of the License at</span>
|
||
<span class="c1">#</span>
|
||
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
|
||
<span class="c1">#</span>
|
||
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
|
||
<span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span>
|
||
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
|
||
<span class="c1"># See the License for the specific language governing permissions and</span>
|
||
<span class="c1"># limitations under the License.</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">typing</span><span class="w"> </span><span class="kn">import</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">OrderedDict</span><span class="p">,</span> <span class="n">Union</span>
|
||
|
||
<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
|
||
<span class="kn">import</span><span class="w"> </span><span class="nn">tensorrt</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">trt</span>
|
||
<span class="kn">import</span><span class="w"> </span><span class="nn">torch</span>
|
||
<span class="kn">import</span><span class="w"> </span><span class="nn">transformers</span>
|
||
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.models.modeling_utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">PretrainedModel</span>
|
||
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">..._common</span><span class="w"> </span><span class="kn">import</span> <span class="n">default_net</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">...functional</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">ACT2FN</span><span class="p">,</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">concat</span><span class="p">,</span> <span class="n">constant</span><span class="p">,</span> <span class="n">cumsum</span><span class="p">,</span> <span class="n">expand</span><span class="p">,</span>
|
||
<span class="n">index_select</span><span class="p">,</span> <span class="n">select</span><span class="p">,</span> <span class="n">shape</span><span class="p">,</span> <span class="nb">slice</span><span class="p">,</span> <span class="n">unsqueeze</span><span class="p">)</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">...layers</span><span class="w"> </span><span class="kn">import</span> <span class="n">MLP</span><span class="p">,</span> <span class="n">BertAttention</span><span class="p">,</span> <span class="n">Embedding</span><span class="p">,</span> <span class="n">LayerNorm</span><span class="p">,</span> <span class="n">Linear</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">...mapping</span><span class="w"> </span><span class="kn">import</span> <span class="n">Mapping</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">...module</span><span class="w"> </span><span class="kn">import</span> <span class="n">Module</span><span class="p">,</span> <span class="n">ModuleList</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">..modeling_utils</span><span class="w"> </span><span class="kn">import</span> <span class="n">QuantConfig</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">.config</span><span class="w"> </span><span class="kn">import</span> <span class="n">BERTConfig</span>
|
||
<span class="kn">from</span><span class="w"> </span><span class="nn">.convert</span><span class="w"> </span><span class="kn">import</span> <span class="p">(</span><span class="n">load_hf_bert_base</span><span class="p">,</span> <span class="n">load_hf_bert_cls</span><span class="p">,</span> <span class="n">load_hf_bert_qa</span><span class="p">,</span>
|
||
<span class="n">load_weights_from_hf_model</span><span class="p">)</span>
|
||
|
||
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertEmbedding</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
||
<span class="n">vocab_size</span><span class="p">,</span>
|
||
<span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">max_position_embeddings</span><span class="p">,</span>
|
||
<span class="n">type_vocab_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">vocab_embedding</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">position_embedding</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">max_position_embeddings</span><span class="p">,</span>
|
||
<span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">token_embedding</span> <span class="o">=</span> <span class="n">Embedding</span><span class="p">(</span><span class="n">type_vocab_size</span><span class="p">,</span>
|
||
<span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">max_position_embeddings</span>
|
||
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">embedding_ln</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">normalized_shape</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_ids</span><span class="p">,</span> <span class="n">position_ids</span><span class="p">,</span> <span class="n">token_type_ids</span><span class="p">):</span>
|
||
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">vocab_embedding</span><span class="p">(</span><span class="n">input_ids</span><span class="p">)</span>
|
||
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">position_embedding</span><span class="p">(</span><span class="n">position_ids</span><span class="p">)</span>
|
||
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">token_embedding</span><span class="p">(</span><span class="n">token_type_ids</span><span class="p">)</span>
|
||
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding_ln</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="k">return</span> <span class="n">x</span>
|
||
|
||
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertEncoderLayer</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
||
<span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">num_attention_heads</span><span class="p">,</span>
|
||
<span class="n">max_position_embeddings</span><span class="p">,</span>
|
||
<span class="n">hidden_act</span><span class="o">=</span><span class="s1">'relu'</span><span class="p">,</span>
|
||
<span class="n">tp_group</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">tp_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">input_layernorm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">normalized_shape</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">attention</span> <span class="o">=</span> <span class="n">BertAttention</span><span class="p">(</span>
|
||
<span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">num_attention_heads</span><span class="p">,</span>
|
||
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">max_position_embeddings</span><span class="p">,</span>
|
||
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
|
||
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">mlp</span> <span class="o">=</span> <span class="n">MLP</span><span class="p">(</span><span class="n">hidden_size</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">ffn_hidden_size</span><span class="o">=</span><span class="n">hidden_size</span> <span class="o">*</span> <span class="mi">4</span><span class="p">,</span>
|
||
<span class="n">hidden_act</span><span class="o">=</span><span class="n">hidden_act</span><span class="p">,</span>
|
||
<span class="n">tp_group</span><span class="o">=</span><span class="n">tp_group</span><span class="p">,</span>
|
||
<span class="n">tp_size</span><span class="o">=</span><span class="n">tp_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">post_layernorm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="p">(</span><span class="n">normalized_shape</span><span class="o">=</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">attention_mask</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||
<span class="n">residual</span> <span class="o">=</span> <span class="n">hidden_states</span>
|
||
|
||
<span class="n">attention_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">attention_mask</span><span class="o">=</span><span class="n">attention_mask</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">residual</span> <span class="o">+</span> <span class="n">attention_output</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">input_layernorm</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
|
||
|
||
<span class="n">residual</span> <span class="o">=</span> <span class="n">hidden_states</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">mlp</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">residual</span> <span class="o">+</span> <span class="n">hidden_states</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">post_layernorm</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
|
||
|
||
<span class="k">return</span> <span class="n">hidden_states</span>
|
||
|
||
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertBase</span><span class="p">(</span><span class="n">PretrainedModel</span><span class="p">):</span>
|
||
<span class="w"> </span><span class="sd">'''</span>
|
||
<span class="sd"> Base class that provides from_huggingface() and prepare_inputs() methods</span>
|
||
<span class="sd"> '''</span>
|
||
<span class="n">config_class</span> <span class="o">=</span> <span class="n">BERTConfig</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
|
||
|
||
<span class="nd">@classmethod</span>
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">load_hf_bert</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">model_dir</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">dtype</span><span class="p">):</span>
|
||
<span class="w"> </span><span class="sd">"""</span>
|
||
<span class="sd"> Use as the abstractmethod, load corresponding HF model.</span>
|
||
<span class="sd"> Subclass must implement this method!</span>
|
||
<span class="sd"> """</span>
|
||
|
||
<span class="k">assert</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">!=</span> <span class="s2">"BertBase"</span><span class="p">,</span> <span class="sa">f</span><span class="s2">"Never call from BertBase class!"</span>
|
||
|
||
<span class="k">if</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"BertModel"</span><span class="p">:</span>
|
||
<span class="k">return</span> <span class="n">load_hf_bert_base</span><span class="p">(</span><span class="n">model_dir</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">,</span> <span class="n">dtype</span><span class="p">)</span>
|
||
<span class="k">elif</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"BertForQuestionAnswering"</span><span class="p">:</span>
|
||
<span class="k">return</span> <span class="n">load_hf_bert_qa</span><span class="p">(</span><span class="n">model_dir</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">,</span> <span class="n">dtype</span><span class="p">)</span>
|
||
<span class="k">elif</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"BertForSequenceClassification"</span><span class="p">:</span>
|
||
<span class="k">return</span> <span class="n">load_hf_bert_cls</span><span class="p">(</span><span class="n">model_dir</span><span class="p">,</span> <span class="n">load_model_on_cpu</span><span class="p">,</span> <span class="n">dtype</span><span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="k">assert</span> <span class="kc">False</span><span class="p">,</span> <span class="sa">f</span><span class="s2">"Unknown class </span><span class="si">{</span><span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">!"</span>
|
||
|
||
<span class="nd">@classmethod</span>
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">from_hugging_face</span><span class="p">(</span>
|
||
<span class="bp">cls</span><span class="p">,</span>
|
||
<span class="n">hf_model_or_dir</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="s1">'transformers.PreTrainedModel'</span><span class="p">],</span>
|
||
<span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">'float16'</span><span class="p">,</span>
|
||
<span class="n">mapping</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Mapping</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">quant_config</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">QuantConfig</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span>
|
||
<span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||
<span class="w"> </span><span class="sd">"""</span>
|
||
<span class="sd"> Create a BertModel object from give parameters</span>
|
||
<span class="sd"> """</span>
|
||
<span class="kn">import</span><span class="w"> </span><span class="nn">transformers</span>
|
||
|
||
<span class="k">assert</span> <span class="n">hf_model_or_dir</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span>
|
||
<span class="n">use_preloading</span> <span class="o">=</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">hf_model_or_dir</span><span class="p">,</span>
|
||
<span class="n">transformers</span><span class="o">.</span><span class="n">PreTrainedModel</span><span class="p">)</span>
|
||
<span class="k">if</span> <span class="n">use_preloading</span><span class="p">:</span>
|
||
<span class="n">hf_model</span> <span class="o">=</span> <span class="n">hf_model_or_dir</span>
|
||
<span class="n">hf_config_or_dir</span> <span class="o">=</span> <span class="n">hf_model</span><span class="o">.</span><span class="n">config</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="n">hf_model_dir</span> <span class="o">=</span> <span class="n">hf_model_or_dir</span>
|
||
<span class="n">hf_config_or_dir</span> <span class="o">=</span> <span class="n">hf_model_or_dir</span>
|
||
|
||
<span class="n">load_model_on_cpu</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'load_model_on_cpu'</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
|
||
<span class="n">tllm_config</span> <span class="o">=</span> <span class="n">BERTConfig</span><span class="o">.</span><span class="n">from_hugging_face</span><span class="p">(</span>
|
||
<span class="n">hf_config_or_dir</span><span class="o">=</span><span class="n">hf_config_or_dir</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span>
|
||
<span class="n">mapping</span><span class="o">=</span><span class="n">mapping</span><span class="p">,</span>
|
||
<span class="n">quant_config</span><span class="o">=</span><span class="n">quant_config</span><span class="p">,</span>
|
||
<span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
|
||
<span class="c1">#NOTE: override architecture info</span>
|
||
<span class="n">RobertaCls_mapping</span> <span class="o">=</span> <span class="p">{</span>
|
||
<span class="s2">"BertModel"</span><span class="p">:</span> <span class="s2">"RobertaModel"</span><span class="p">,</span>
|
||
<span class="s2">"BertForQuestionAnswering"</span><span class="p">:</span> <span class="s2">"RobertaForQuestionAnswering"</span><span class="p">,</span>
|
||
<span class="s2">"BertForSequenceClassification"</span><span class="p">:</span> <span class="s2">"RobertaForSequenceClassification"</span><span class="p">,</span>
|
||
<span class="p">}</span>
|
||
<span class="k">if</span> <span class="n">tllm_config</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
|
||
<span class="nb">setattr</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">,</span> <span class="s1">'architecture'</span><span class="p">,</span>
|
||
<span class="n">RobertaCls_mapping</span><span class="p">[</span><span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="p">])</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="nb">setattr</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">,</span> <span class="s1">'architecture'</span><span class="p">,</span> <span class="bp">cls</span><span class="o">.</span><span class="vm">__name__</span><span class="p">)</span>
|
||
|
||
<span class="n">torch_dtype</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span> <span class="k">if</span> <span class="n">dtype</span> <span class="o">==</span> <span class="s1">'float16'</span> <span class="k">else</span> <span class="n">torch</span><span class="o">.</span><span class="n">float32</span>
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="n">use_preloading</span><span class="p">:</span>
|
||
<span class="n">hf_model</span> <span class="o">=</span> <span class="bp">cls</span><span class="o">.</span><span class="n">load_hf_bert</span><span class="p">(</span><span class="n">model_dir</span><span class="o">=</span><span class="n">hf_model_dir</span><span class="p">,</span>
|
||
<span class="n">load_model_on_cpu</span><span class="o">=</span><span class="n">load_model_on_cpu</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">torch_dtype</span><span class="p">)</span>
|
||
<span class="n">weights</span> <span class="o">=</span> <span class="n">load_weights_from_hf_model</span><span class="p">(</span><span class="n">hf_model</span><span class="o">=</span><span class="n">hf_model</span><span class="p">,</span>
|
||
<span class="n">config</span><span class="o">=</span><span class="n">tllm_config</span><span class="p">)</span>
|
||
<span class="n">model</span> <span class="o">=</span> <span class="bp">cls</span><span class="p">(</span><span class="n">tllm_config</span><span class="p">)</span>
|
||
<span class="n">model</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
|
||
|
||
<span class="k">return</span> <span class="n">model</span>
|
||
|
||
<span class="c1"># Override the PretrainedModel's meothd, can unify in the future.</span>
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">prepare_inputs</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">max_batch_size</span><span class="p">,</span> <span class="n">max_input_len</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
|
||
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
|
||
<span class="c1"># opt_shape is set to half of max batch_size and seq_len by default</span>
|
||
<span class="c1"># tune this according to real data distribution</span>
|
||
<span class="n">bs_range</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="n">max_batch_size</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">max_batch_size</span><span class="p">]</span>
|
||
<span class="n">inlen_range</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">(</span><span class="n">max_input_len</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">max_input_len</span><span class="p">]</span>
|
||
<span class="n">num_tokens_range</span> <span class="o">=</span> <span class="p">[</span>
|
||
<span class="mi">1</span><span class="p">,</span>
|
||
<span class="p">(</span><span class="n">max_input_len</span> <span class="o">*</span> <span class="n">max_batch_size</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
|
||
<span class="n">max_input_len</span> <span class="o">*</span> <span class="n">max_batch_size</span><span class="p">,</span>
|
||
<span class="p">]</span>
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="n">input_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
|
||
<span class="n">name</span><span class="o">=</span><span class="s1">'input_ids'</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">'batch_size'</span><span class="p">,</span> <span class="p">[</span><span class="n">bs_range</span><span class="p">]),</span>
|
||
<span class="p">(</span><span class="s1">'input_len'</span><span class="p">,</span> <span class="p">[</span><span class="n">inlen_range</span><span class="p">])]),</span>
|
||
<span class="p">)</span>
|
||
<span class="c1"># also called segment_ids</span>
|
||
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
|
||
<span class="n">name</span><span class="o">=</span><span class="s1">'token_type_ids'</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">'batch_size'</span><span class="p">,</span> <span class="p">[</span><span class="n">bs_range</span><span class="p">]),</span>
|
||
<span class="p">(</span><span class="s1">'input_len'</span><span class="p">,</span> <span class="p">[</span><span class="n">inlen_range</span><span class="p">])]),</span>
|
||
<span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="n">input_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
|
||
<span class="n">name</span><span class="o">=</span><span class="s2">"input_ids"</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s2">"num_tokens"</span><span class="p">,</span> <span class="p">[</span><span class="n">num_tokens_range</span><span class="p">])]),</span>
|
||
<span class="p">)</span>
|
||
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
|
||
<span class="n">name</span><span class="o">=</span><span class="s1">'token_type_ids'</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">'num_tokens'</span><span class="p">,</span> <span class="p">[</span><span class="n">num_tokens_range</span><span class="p">])]),</span>
|
||
<span class="p">)</span>
|
||
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
|
||
<span class="n">name</span><span class="o">=</span><span class="s1">'position_ids'</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">'num_tokens'</span><span class="p">,</span> <span class="p">[</span><span class="n">num_tokens_range</span><span class="p">])]),</span>
|
||
<span class="p">)</span>
|
||
<span class="n">max_input_length</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span>
|
||
<span class="n">name</span><span class="o">=</span><span class="s2">"max_input_length"</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s2">"max_input_length"</span><span class="p">,</span> <span class="p">[</span><span class="n">inlen_range</span><span class="p">])]),</span>
|
||
<span class="p">)</span>
|
||
<span class="n">input_lengths</span> <span class="o">=</span> <span class="n">Tensor</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">'input_lengths'</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">trt</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span>
|
||
<span class="n">dim_range</span><span class="o">=</span><span class="n">OrderedDict</span><span class="p">([(</span><span class="s1">'batch_size'</span><span class="p">,</span> <span class="p">[</span><span class="n">bs_range</span><span class="p">])</span>
|
||
<span class="p">]))</span>
|
||
|
||
<span class="n">inputs</span> <span class="o">=</span> <span class="p">{</span>
|
||
<span class="s1">'input_ids'</span><span class="p">:</span> <span class="n">input_ids</span><span class="p">,</span>
|
||
<span class="s1">'input_lengths'</span><span class="p">:</span> <span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="s1">'token_type_ids'</span><span class="p">:</span> <span class="n">token_type_ids</span><span class="p">,</span>
|
||
<span class="p">}</span>
|
||
|
||
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="n">inputs</span><span class="p">[</span><span class="s1">'position_ids'</span><span class="p">]</span> <span class="o">=</span> <span class="n">position_ids</span>
|
||
<span class="n">inputs</span><span class="p">[</span><span class="s1">'max_input_length'</span><span class="p">]</span> <span class="o">=</span> <span class="n">max_input_length</span>
|
||
|
||
<span class="k">return</span> <span class="n">inputs</span>
|
||
|
||
|
||
<div class="viewcode-block" id="BertModel">
|
||
<a class="viewcode-back" href="../../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertModel">[docs]</a>
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertModel</span><span class="p">(</span><span class="n">BertBase</span><span class="p">):</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
|
||
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">config</span> <span class="o">=</span> <span class="n">config</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">padding_idx</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">pad_token_id</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">is_roberta</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">BertEmbedding</span><span class="p">(</span>
|
||
<span class="n">vocab_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">vocab_size</span><span class="p">,</span>
|
||
<span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
|
||
<span class="n">type_vocab_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">type_vocab_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
|
||
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">ModuleList</span><span class="p">([</span>
|
||
<span class="n">BertEncoderLayer</span><span class="p">(</span>
|
||
<span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">num_attention_heads</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">num_attention_heads</span><span class="p">,</span>
|
||
<span class="n">max_position_embeddings</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">,</span>
|
||
<span class="n">hidden_act</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_act</span><span class="p">,</span>
|
||
<span class="n">tp_group</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_group</span><span class="p">,</span>
|
||
<span class="n">tp_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">mapping</span><span class="o">.</span><span class="n">tp_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span><span class="p">)</span>
|
||
<span class="p">])</span>
|
||
|
||
<div class="viewcode-block" id="BertModel.forward">
|
||
<a class="viewcode-back" href="../../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertModel.forward">[docs]</a>
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
||
<span class="n">input_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">token_type_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||
<span class="c1"># remove_input_padding requires these fields as explicit input</span>
|
||
<span class="n">mask</span> <span class="o">=</span> <span class="kc">None</span>
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="n">seq_len_2d</span> <span class="o">=</span> <span class="n">concat</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">,</span> <span class="mi">1</span><span class="p">)])</span>
|
||
|
||
<span class="c1"># create position ids</span>
|
||
<span class="n">position_ids_buffer</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
|
||
<span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
|
||
<span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
|
||
<span class="mi">0</span><span class="p">))</span>
|
||
<span class="n">tmp_position_ids</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">position_ids_buffer</span><span class="p">,</span>
|
||
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
|
||
<span class="n">sizes</span><span class="o">=</span><span class="n">seq_len_2d</span><span class="p">)</span>
|
||
<span class="n">tmp_position_ids</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">tmp_position_ids</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span> <span class="c1">#BxL</span>
|
||
<span class="n">tmp_input_lengths</span> <span class="o">=</span> <span class="n">unsqueeze</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">#Bx1</span>
|
||
<span class="n">tmp_input_lengths</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">tmp_input_lengths</span><span class="p">,</span>
|
||
<span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span> <span class="c1">#BxL</span>
|
||
<span class="n">mask</span> <span class="o">=</span> <span class="n">tmp_position_ids</span> <span class="o"><</span> <span class="n">tmp_input_lengths</span> <span class="c1"># BxL</span>
|
||
<span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">cast</span><span class="p">(</span><span class="s1">'int32'</span><span class="p">)</span>
|
||
|
||
<span class="k">if</span> <span class="n">position_ids</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
|
||
<span class="c1"># see create_position_ids_from_input_ids() in https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py</span>
|
||
<span class="n">position_ids</span> <span class="o">=</span> <span class="p">(</span><span class="n">tmp_position_ids</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">mask</span>
|
||
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">position_ids</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">padding_idx</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="n">position_ids</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">position_ids_buffer</span><span class="p">,</span>
|
||
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
|
||
<span class="n">sizes</span><span class="o">=</span><span class="n">seq_len_2d</span><span class="p">)</span>
|
||
<span class="n">position_ids</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">position_ids</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span>
|
||
|
||
<span class="c1"># create token_type_ids</span>
|
||
<span class="k">if</span> <span class="n">token_type_ids</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
|
||
<span class="n">token_type_ids_buffer</span> <span class="o">=</span> <span class="n">constant</span><span class="p">(</span>
|
||
<span class="n">np</span><span class="o">.</span><span class="n">expand_dims</span><span class="p">(</span>
|
||
<span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">max_position_embeddings</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">),</span>
|
||
<span class="mi">0</span><span class="p">))</span>
|
||
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="nb">slice</span><span class="p">(</span><span class="n">token_type_ids_buffer</span><span class="p">,</span>
|
||
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span>
|
||
<span class="n">sizes</span><span class="o">=</span><span class="n">seq_len_2d</span><span class="p">)</span>
|
||
<span class="n">token_type_ids</span> <span class="o">=</span> <span class="n">expand</span><span class="p">(</span><span class="n">token_type_ids</span><span class="p">,</span> <span class="n">shape</span><span class="p">(</span><span class="n">input_ids</span><span class="p">))</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">input_ids</span><span class="p">,</span> <span class="n">position_ids</span><span class="p">,</span> <span class="n">token_type_ids</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">register_network_output</span><span class="p">(</span><span class="s1">'embedding_output'</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">)</span>
|
||
|
||
<span class="k">for</span> <span class="n">idx</span><span class="p">,</span> <span class="n">layer</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">):</span>
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span><span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">attention_mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
|
||
<span class="c1"># keep the last layer output name as hidden_states</span>
|
||
<span class="k">if</span> <span class="p">((</span><span class="n">idx</span> <span class="o">==</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">num_hidden_layers</span> <span class="o">-</span> <span class="mi">1</span><span class="p">))</span> <span class="ow">and</span>
|
||
<span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">architecture</span> <span class="ow">in</span> <span class="p">[</span><span class="s2">"BertModel"</span><span class="p">,</span> <span class="s2">"RobertaModel"</span><span class="p">])):</span>
|
||
<span class="n">hidden_states</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">'hidden_states'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">register_network_output</span><span class="p">(</span><span class="sa">f</span><span class="s2">"layer_</span><span class="si">{</span><span class="n">idx</span><span class="si">}</span><span class="s2">_output"</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="p">)</span>
|
||
|
||
<span class="k">return</span> <span class="n">hidden_states</span></div>
|
||
</div>
|
||
|
||
|
||
|
||
<span class="n">RobertaModel</span> <span class="o">=</span> <span class="n">BertModel</span>
|
||
|
||
|
||
<div class="viewcode-block" id="BertForQuestionAnswering">
|
||
<a class="viewcode-back" href="../../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForQuestionAnswering">[docs]</a>
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertForQuestionAnswering</span><span class="p">(</span><span class="n">BertBase</span><span class="p">):</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">bert</span> <span class="o">=</span> <span class="n">BertModel</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">num_labels</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_labels</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">qa_outputs</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">config</span><span class="o">.</span><span class="n">num_labels</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
|
||
|
||
<div class="viewcode-block" id="BertForQuestionAnswering.forward">
|
||
<a class="viewcode-back" href="../../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForQuestionAnswering.forward">[docs]</a>
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
||
<span class="n">input_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">token_type_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||
|
||
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
|
||
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="k">assert</span> <span class="n">token_type_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
|
||
<span class="n">position_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
|
||
<span class="n">max_input_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">,</span> \
|
||
<span class="s2">"token_type_ids, position_ids, max_input_length is required "</span> \
|
||
<span class="s2">"in remove_input_padding mode"</span>
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bert</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">input_ids</span><span class="o">=</span><span class="n">input_ids</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">token_type_ids</span><span class="o">=</span><span class="n">token_type_ids</span><span class="p">,</span>
|
||
<span class="n">position_ids</span><span class="o">=</span><span class="n">position_ids</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
|
||
|
||
<span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">qa_outputs</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">)</span>
|
||
<span class="n">logits</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">'logits'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
|
||
|
||
<span class="k">return</span> <span class="n">logits</span></div>
|
||
</div>
|
||
|
||
|
||
|
||
<span class="n">RobertaForQuestionAnswering</span> <span class="o">=</span> <span class="n">BertForQuestionAnswering</span>
|
||
|
||
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertPooler</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="s1">'tanh'</span><span class="p">]</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">input_lengths</span><span class="p">,</span> <span class="n">remove_input_padding</span><span class="p">):</span>
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="c1"># We "pool" the model by simply taking the hidden state corresponding</span>
|
||
<span class="c1"># to the first token.</span>
|
||
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="c1"># when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size]</span>
|
||
<span class="c1"># We can take the first token of each sequence according to input_lengths,</span>
|
||
<span class="c1"># and then do pooling similar to padding mode.</span>
|
||
<span class="c1"># For example, if input_lengths is [8, 5, 6], then the indices of first tokens</span>
|
||
<span class="c1"># should be [0, 8, 13]</span>
|
||
<span class="n">first_token_indices</span> <span class="o">=</span> <span class="n">cumsum</span><span class="p">(</span>
|
||
<span class="n">concat</span><span class="p">([</span>
|
||
<span class="mi">0</span><span class="p">,</span>
|
||
<span class="nb">slice</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
|
||
<span class="n">sizes</span><span class="o">=</span><span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">)</span> <span class="o">-</span>
|
||
<span class="n">constant</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">))))</span>
|
||
<span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
|
||
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">index_select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
|
||
<span class="n">first_token_indices</span><span class="p">)</span>
|
||
|
||
<span class="n">pooled_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">first_token_tensor</span><span class="p">)</span>
|
||
<span class="n">pooled_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">pooled_output</span><span class="p">)</span>
|
||
<span class="k">return</span> <span class="n">pooled_output</span>
|
||
|
||
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">RobertaClassificationHead</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span>
|
||
<span class="w"> </span><span class="sd">"""Head for sentence-level classification tasks."""</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">num_labels</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">dense</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">hidden_size</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">out_proj</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">hidden_size</span><span class="p">,</span> <span class="n">num_labels</span><span class="p">)</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">hidden_states</span><span class="p">,</span> <span class="n">input_lengths</span><span class="p">,</span> <span class="n">remove_input_padding</span><span class="p">):</span>
|
||
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="c1"># We "pool" the model by simply taking the hidden state corresponding</span>
|
||
<span class="c1"># to the first token.</span>
|
||
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="c1"># when remove_input_padding is enabled, the shape of hidden_states is [num_tokens, hidden_size]</span>
|
||
<span class="c1"># We can take the first token of each sequence according to input_lengths,</span>
|
||
<span class="c1"># and then do pooling similar to padding mode.</span>
|
||
<span class="c1"># For example, if input_lengths is [8, 5, 6], then the indices of first tokens</span>
|
||
<span class="c1"># should be [0, 8, 13]</span>
|
||
<span class="n">first_token_indices</span> <span class="o">=</span> <span class="n">cumsum</span><span class="p">(</span>
|
||
<span class="n">concat</span><span class="p">([</span>
|
||
<span class="mi">0</span><span class="p">,</span>
|
||
<span class="nb">slice</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">starts</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span>
|
||
<span class="n">sizes</span><span class="o">=</span><span class="p">(</span><span class="n">shape</span><span class="p">(</span><span class="n">input_lengths</span><span class="p">)</span> <span class="o">-</span>
|
||
<span class="n">constant</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">int32</span><span class="p">))))</span>
|
||
<span class="p">]),</span> <span class="mi">0</span><span class="p">)</span>
|
||
<span class="n">first_token_tensor</span> <span class="o">=</span> <span class="n">index_select</span><span class="p">(</span><span class="n">hidden_states</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span>
|
||
<span class="n">first_token_indices</span><span class="p">)</span>
|
||
|
||
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dense</span><span class="p">(</span><span class="n">first_token_tensor</span><span class="p">)</span>
|
||
<span class="n">x</span> <span class="o">=</span> <span class="n">ACT2FN</span><span class="p">[</span><span class="s1">'tanh'</span><span class="p">](</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_proj</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
|
||
<span class="k">return</span> <span class="n">x</span>
|
||
|
||
|
||
<div class="viewcode-block" id="BertForSequenceClassification">
|
||
<a class="viewcode-back" href="../../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForSequenceClassification">[docs]</a>
|
||
<span class="k">class</span><span class="w"> </span><span class="nc">BertForSequenceClassification</span><span class="p">(</span><span class="n">BertBase</span><span class="p">):</span>
|
||
|
||
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">BERTConfig</span><span class="p">):</span>
|
||
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
|
||
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">config</span> <span class="o">=</span> <span class="n">config</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">is_roberta</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">bert</span> <span class="o">=</span> <span class="n">BertModel</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">num_labels</span> <span class="o">=</span> <span class="n">config</span><span class="o">.</span><span class="n">num_labels</span>
|
||
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="n">config</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">pooler</span> <span class="o">=</span> <span class="n">BertPooler</span><span class="p">(</span><span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">Linear</span><span class="p">(</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">config</span><span class="o">.</span><span class="n">num_labels</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="bp">self</span><span class="o">.</span><span class="n">classifier</span> <span class="o">=</span> <span class="n">RobertaClassificationHead</span><span class="p">(</span>
|
||
<span class="n">hidden_size</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">hidden_size</span><span class="p">,</span>
|
||
<span class="n">num_labels</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">num_labels</span><span class="p">,</span>
|
||
<span class="n">dtype</span><span class="o">=</span><span class="n">config</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
|
||
|
||
<div class="viewcode-block" id="BertForSequenceClassification.forward">
|
||
<a class="viewcode-back" href="../../../../legacy/python-api/tensorrt_llm.models.html#tensorrt_llm.models.BertForSequenceClassification.forward">[docs]</a>
|
||
<span class="k">def</span><span class="w"> </span><span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
|
||
<span class="n">input_ids</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">token_type_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">position_ids</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
|
||
|
||
<span class="n">remove_input_padding</span> <span class="o">=</span> <span class="n">default_net</span><span class="p">()</span><span class="o">.</span><span class="n">plugin_config</span><span class="o">.</span><span class="n">remove_input_padding</span>
|
||
|
||
<span class="c1"># required as explicit input in remove_input_padding mode</span>
|
||
<span class="c1"># see examples/models/core/bert/run_remove_input_padding.py for how to create them from input_ids and input_lengths</span>
|
||
<span class="k">if</span> <span class="n">remove_input_padding</span><span class="p">:</span>
|
||
<span class="k">assert</span> <span class="n">token_type_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
|
||
<span class="n">position_ids</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> \
|
||
<span class="n">max_input_length</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">,</span> \
|
||
<span class="s2">"token_type_ids, position_ids, max_input_length is required "</span> \
|
||
<span class="s2">"in remove_input_padding mode"</span>
|
||
|
||
<span class="n">hidden_states</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bert</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">input_ids</span><span class="o">=</span><span class="n">input_ids</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">token_type_ids</span><span class="o">=</span><span class="n">token_type_ids</span><span class="p">,</span>
|
||
<span class="n">position_ids</span><span class="o">=</span><span class="n">position_ids</span><span class="p">,</span>
|
||
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">max_input_length</span><span class="o">=</span><span class="n">max_input_length</span><span class="p">)</span>
|
||
|
||
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_roberta</span><span class="p">:</span>
|
||
<span class="n">pooled_output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pooler</span><span class="p">(</span>
|
||
<span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">)</span>
|
||
<span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">pooled_output</span><span class="p">)</span>
|
||
<span class="k">else</span><span class="p">:</span>
|
||
<span class="n">logits</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier</span><span class="p">(</span><span class="n">hidden_states</span><span class="o">=</span><span class="n">hidden_states</span><span class="p">,</span>
|
||
<span class="n">input_lengths</span><span class="o">=</span><span class="n">input_lengths</span><span class="p">,</span>
|
||
<span class="n">remove_input_padding</span><span class="o">=</span><span class="n">remove_input_padding</span><span class="p">)</span>
|
||
|
||
<span class="n">logits</span><span class="o">.</span><span class="n">mark_output</span><span class="p">(</span><span class="s1">'logits'</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">config</span><span class="o">.</span><span class="n">logits_dtype</span><span class="p">)</span>
|
||
<span class="k">return</span> <span class="n">logits</span></div>
|
||
</div>
|
||
|
||
|
||
|
||
<span class="n">RobertaForSequenceClassification</span> <span class="o">=</span> <span class="n">BertForSequenceClassification</span>
|
||
</pre></div>
|
||
|
||
</article>
|
||
|
||
|
||
|
||
|
||
|
||
<footer class="prev-next-footer d-print-none">
|
||
|
||
<div class="prev-next-area">
|
||
</div>
|
||
</footer>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="bd-sidebar-secondary"></div>
|
||
|
||
|
||
|
||
|
||
|
||
</div>
|
||
<footer class="bd-footer-content">
|
||
|
||
</footer>
|
||
|
||
</main>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<!-- Scripts loaded after <body> so the DOM is not blocked -->
|
||
<script defer src="../../../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
|
||
<script defer src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
|
||
|
||
|
||
<footer class="bd-footer">
|
||
<div class="bd-footer__inner bd-page-width">
|
||
|
||
<div class="footer-items__start">
|
||
|
||
<div class="footer-item">
|
||
<a class="footer-brand logo" href="https://www.nvidia.com">
|
||
<img src="../../../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
|
||
<img src="../../../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
|
||
</a></div>
|
||
|
||
<div class="footer-item">
|
||
|
||
<div class="footer-links">
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
|
||
|
||
|
||
|
||
</div>
|
||
</div>
|
||
|
||
<div class="footer-item">
|
||
|
||
|
||
|
||
|
||
<p class="copyright">
|
||
|
||
Copyright © 2025, NVidia.
|
||
<br/>
|
||
|
||
</p>
|
||
</div>
|
||
|
||
<div class="footer-item">
|
||
<div class="extra_footer">
|
||
|
||
<p>Last updated on November 23, 2025.</p>
|
||
|
||
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/a761585">a761585</a>.</p>
|
||
|
||
</div></div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</footer>
|
||
</body>
|
||
</html> |