mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
919 lines
51 KiB
HTML
919 lines
51 KiB
HTML
|
||
|
||
<!DOCTYPE html>
|
||
|
||
|
||
<html lang="en" data-content_root="../" >
|
||
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
||
|
||
<title>Parallelism in TensorRT LLM — TensorRT LLM</title>
|
||
|
||
|
||
|
||
<script data-cfasync="false">
|
||
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
|
||
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
|
||
</script>
|
||
<!--
|
||
this give us a css class that will be invisible only if js is disabled
|
||
-->
|
||
<noscript>
|
||
<style>
|
||
.pst-js-only { display: none !important; }
|
||
|
||
</style>
|
||
</noscript>
|
||
|
||
<!-- Loaded before other Sphinx assets -->
|
||
<link href="../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
||
<link href="../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
||
|
||
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=8f2a1f02" />
|
||
<link rel="stylesheet" type="text/css" href="../_static/styles/nvidia-sphinx-theme.css?v=933278ad" />
|
||
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
|
||
<link rel="stylesheet" type="text/css" href="../_static/autodoc_pydantic.css" />
|
||
<link rel="stylesheet" type="text/css" href="../_static/togglebutton.css?v=13237357" />
|
||
<link rel="stylesheet" type="text/css" href="../_static/custom.css?v=19d20f17" />
|
||
|
||
<!-- So that users can add custom icons -->
|
||
<script src="../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
|
||
<!-- Pre-loaded scripts that we'll load fully later -->
|
||
<link rel="preload" as="script" href="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
|
||
<link rel="preload" as="script" href="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
|
||
|
||
|
||
|
||
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
|
||
<script src="../_static/doctools.js?v=9a2dae69"></script>
|
||
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
|
||
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
|
||
<script src="../_static/copybutton.js?v=65e89d2a"></script>
|
||
<script>let toggleHintShow = 'Click to show';</script>
|
||
<script>let toggleHintHide = 'Click to hide';</script>
|
||
<script>let toggleOpenOnPrint = 'true';</script>
|
||
<script src="../_static/togglebutton.js?v=4a39c7ea"></script>
|
||
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
|
||
<script>var togglebuttonSelector = '.toggle, .admonition.dropdown';</script>
|
||
<script>DOCUMENTATION_OPTIONS.pagename = 'features/parallel-strategy';</script>
|
||
<script>
|
||
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
|
||
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
|
||
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '1.2.0rc4';
|
||
DOCUMENTATION_OPTIONS.show_version_warning_banner =
|
||
false;
|
||
</script>
|
||
|
||
<link rel="icon" href="../_static/favicon.png"/>
|
||
|
||
<link rel="index" title="Index" href="../genindex.html" />
|
||
<link rel="search" title="Search" href="../search.html" />
|
||
<link rel="next" title="Quantization" href="quantization.html" />
|
||
<link rel="prev" title="Paged Attention, IFB, and Request Scheduling" href="paged-attention-ifb-scheduler.html" />
|
||
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
||
<meta name="docsearch:language" content="en"/>
|
||
<meta name="docsearch:version" content="1.2.0rc4" />
|
||
|
||
|
||
</head>
|
||
|
||
|
||
|
||
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
|
||
|
||
|
||
|
||
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
|
||
|
||
|
||
|
||
<div id="pst-scroll-pixel-helper"></div>
|
||
|
||
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
|
||
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
|
||
|
||
|
||
<dialog id="pst-search-dialog">
|
||
|
||
<form class="bd-search d-flex align-items-center"
|
||
action="../search.html"
|
||
method="get">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<input type="search"
|
||
class="form-control"
|
||
name="q"
|
||
placeholder="Search the docs ..."
|
||
aria-label="Search the docs ..."
|
||
autocomplete="off"
|
||
autocorrect="off"
|
||
autocapitalize="off"
|
||
spellcheck="false"/>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
|
||
</form>
|
||
</dialog>
|
||
|
||
<div class="pst-async-banner-revealer d-none">
|
||
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
|
||
</div>
|
||
|
||
|
||
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
|
||
<div class="bd-header__inner bd-page-width">
|
||
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
|
||
<span class="fa-solid fa-bars"></span>
|
||
</button>
|
||
|
||
|
||
<div class="col-lg-3 navbar-header-items__start">
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
|
||
|
||
|
||
<a class="navbar-brand logo" href="../index.html">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
|
||
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
|
||
|
||
|
||
<p class="title logo__title">TensorRT LLM</p>
|
||
|
||
</a></div>
|
||
|
||
</div>
|
||
|
||
<div class="col-lg-9 navbar-header-items">
|
||
|
||
<div class="me-auto navbar-header-items__center">
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
<div class="version-switcher__container dropdown pst-js-only">
|
||
<button id="pst-version-switcher-button-2"
|
||
type="button"
|
||
class="version-switcher__button btn btn-sm dropdown-toggle"
|
||
data-bs-toggle="dropdown"
|
||
aria-haspopup="listbox"
|
||
aria-controls="pst-version-switcher-list-2"
|
||
aria-label="Version switcher list"
|
||
>
|
||
Choose version <!-- this text may get changed later by javascript -->
|
||
<span class="caret"></span>
|
||
</button>
|
||
<div id="pst-version-switcher-list-2"
|
||
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
||
role="listbox" aria-labelledby="pst-version-switcher-button-2">
|
||
<!-- dropdown will be populated by javascript on page load -->
|
||
</div>
|
||
</div></div>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="navbar-header-items__end">
|
||
|
||
<div class="navbar-item navbar-persistent--container">
|
||
|
||
|
||
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<span class="search-button__default-text">Search</span>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
||
</button>
|
||
</div>
|
||
|
||
|
||
<div class="navbar-item">
|
||
|
||
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
||
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
||
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
||
</button></div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="navbar-persistent--mobile">
|
||
|
||
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="fa-solid fa-magnifying-glass"></i>
|
||
<span class="search-button__default-text">Search</span>
|
||
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
||
</button>
|
||
</div>
|
||
|
||
|
||
|
||
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
|
||
<span class="fa-solid fa-outdent"></span>
|
||
</button>
|
||
|
||
</div>
|
||
|
||
</header>
|
||
|
||
|
||
<div class="bd-container">
|
||
<div class="bd-container__inner bd-page-width">
|
||
|
||
|
||
|
||
<dialog id="pst-primary-sidebar-modal"></dialog>
|
||
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<a class="navbar-brand logo" href="../index.html">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<img src="../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT LLM - Home"/>
|
||
<img src="../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT LLM - Home"/>
|
||
|
||
|
||
<p class="title logo__title">TensorRT LLM</p>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
<div class="sidebar-header-items sidebar-primary__section">
|
||
|
||
|
||
<div class="sidebar-header-items__center">
|
||
|
||
|
||
|
||
<div class="navbar-item">
|
||
|
||
|
||
<div class="version-switcher__container dropdown pst-js-only">
|
||
<button id="pst-version-switcher-button-3"
|
||
type="button"
|
||
class="version-switcher__button btn btn-sm dropdown-toggle"
|
||
data-bs-toggle="dropdown"
|
||
aria-haspopup="listbox"
|
||
aria-controls="pst-version-switcher-list-3"
|
||
aria-label="Version switcher list"
|
||
>
|
||
Choose version <!-- this text may get changed later by javascript -->
|
||
<span class="caret"></span>
|
||
</button>
|
||
<div id="pst-version-switcher-list-3"
|
||
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
||
role="listbox" aria-labelledby="pst-version-switcher-button-3">
|
||
<!-- dropdown will be populated by javascript on page load -->
|
||
</div>
|
||
</div></div>
|
||
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<div class="sidebar-header-items__end">
|
||
|
||
<div class="navbar-item">
|
||
|
||
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
||
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
||
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
||
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
||
</button></div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
<div class="sidebar-primary-items__start sidebar-primary__section">
|
||
<div class="sidebar-primary-item">
|
||
|
||
|
||
|
||
<nav class="bd-docs-nav bd-links"
|
||
aria-label="Table of Contents">
|
||
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
|
||
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../installation/index.html">Installation</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../installation/containers.html">Pre-built release container images on NGC</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../installation/linux.html">Installing on Linux via <code class="docutils literal notranslate"><span class="pre">pip</span></code></a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Deployment Guide</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference.html">Generate text</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_async.html">Generate text asynchronously</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_async_streaming.html">Generate text in streaming</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_sparse_attention.html">Sparse Attention</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_speculative_decoding.html">Speculative Decoding</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_kv_cache_connector.html">KV Cache Connector</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_kv_cache_offloading.html">KV Cache Offloading</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_runtime.html">Runtime Configuration Examples</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_sampling.html">Sampling Techniques Showcase</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_llm_distributed.html">Run LLM-API with pytorch backend on Slurm</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_trtllm_bench.html">Run trtllm-bench with pytorch backend on Slurm</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/llm_mgmn_trtllm_serve.html">Run trtllm-serve with pytorch backend on Slurm</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_chat_client.html">Curl Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/curl_completion_client.html">Curl Completion Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/genai_perf_client.html">Genai Perf Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client for Multimodal</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client_for_lora.html">Openai Completion Client For Lora</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../examples/openai_completion_client_json_schema.html">OpenAI Completion Client with JSON Schema</a></li>
|
||
</ul>
|
||
</details></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../examples/dynamo_k8s_example.html">Dynamo K8s Example</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../deployment-guide/index.html">Model Recipes</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-deepseek-r1-on-trtllm.html">Deployment Guide for DeepSeek R1 on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama3.3-70b-on-trtllm.html">Deployment Guide for Llama3.3 70B on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-llama4-scout-on-trtllm.html">Deployment Guide for Llama4 Scout 17B on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-gpt-oss-on-trtllm.html">Deployment Guide for GPT-OSS on TensorRT-LLM - Blackwell Hardware</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../deployment-guide/deployment-guide-for-qwen3-next-on-trtllm.html">Deployment Guide for Qwen3 Next on TensorRT LLM - Blackwell & Hopper Hardware</a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Models</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../models/supported-models.html">Supported Models</a></li>
|
||
|
||
<li class="toctree-l1"><a class="reference internal" href="../models/adding-new-model.html">Adding a New Model</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">CLI Reference</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-bench.html">trtllm-bench</a></li>
|
||
|
||
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-eval.html">trtllm-eval</a></li>
|
||
<li class="toctree-l1 has-children"><a class="reference internal" href="../commands/trtllm-serve/index.html">trtllm-serve</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
||
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/trtllm-serve.html">trtllm-serve</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../commands/trtllm-serve/run-benchmark-with-trtllm-serve.html">Run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code></a></li>
|
||
</ul>
|
||
</details></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">API Reference</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">LLM API Introduction</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Features</span></p>
|
||
<ul class="current nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="feature-combination-matrix.html">Feature Combination Matrix</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="disagg-serving.html">Disaggregated Serving</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="kvcache.html">KV Cache System</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="long-sequence.html">Long Sequences</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="lora.html">LoRA (Low-Rank Adaptation)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="multi-modality.html">Multimodal Support in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="overlap-scheduler.html">Overlap Scheduler</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="paged-attention-ifb-scheduler.html">Paged Attention, IFB, and Request Scheduling</a></li>
|
||
<li class="toctree-l1 current active"><a class="current reference internal" href="#">Parallelism in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="quantization.html">Quantization</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="sampling.html">Sampling</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="additional-outputs.html">Additional Outputs</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="speculative-decoding.html">Speculative Decoding</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="checkpoint-loading.html">Checkpoint Loading</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="auto_deploy/auto-deploy.html">AutoDeploy (Prototype)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="ray-orchestrator.html">Ray Orchestrator (Prototype)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="torch_compile_and_piecewise_cuda_graph.html">Torch Compile & Piecewise CUDA Graph</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Developer Guide</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/overview.html">Architecture Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-analysis.html">Performance Analysis</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/perf-benchmarking.html">TensorRT LLM Benchmarking</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/ci-overview.html">Continuous Integration Overview</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/dev-containers.html">Using Dev Containers</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/api-change.html">LLM API Change Guide</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../developer-guide/kv-transfer.html">Introduction to KV Cache Transmission</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog10_ADP_Balance_Strategy.html">ADP Balance Strategy</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog11_GPT_OSS_Eagle3.html">Running GPT-OSS-120B with Eagle3 Speculative Decoding on GB200/B200 (TensorRT LLM)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog12_Combining_Guided_Decoding_and_Speculative_Decoding.html">Combining Guided Decoding and Speculative Decoding: Making CPU and GPU Cooperate Seamlessly</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog13_Inference_Time_Compute_Implementation_in_TensorRT-LLM.html">Inference Time Compute Implementation in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog14_Scaling_Expert_Parallelism_in_TensorRT-LLM_part3.html">Scaling Expert Parallelism in TensorRT LLM (Part 3: Pushing the Performance Boundary)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog3_Optimizing_DeepSeek_R1_Throughput_on_NVIDIA_Blackwell_GPUs.html">Optimizing DeepSeek R1 Throughput on NVIDIA Blackwell GPUs: A Deep Dive for Developers</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.html">Scaling Expert Parallelism in TensorRT LLM (Part 1: Design and Implementation of Large-scale EP)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog5_Disaggregated_Serving_in_TensorRT-LLM.html">Disaggregated Serving in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog6_Llama4_maverick_eagle_guide.html">How to launch Llama4 Maverick + Eagle3 TensorRT LLM server</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog7_NGram_performance_Analysis_And_Auto_Enablement.html">N-Gram Speculative Decoding in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog8_Scaling_Expert_Parallelism_in_TensorRT-LLM_part2.html">Scaling Expert Parallelism in TensorRT LLM (Part 2: Performance Status and Optimization)</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/tech_blog/blog9_Deploying_GPT_OSS_on_TRTLLM.html">Running a High Performance GPT-OSS-120B Inference Server with TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/Best_perf_practice_on_DeepSeek-R1_in_TensorRT-LLM.html">How to get best performance on DeepSeek-R1 in TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT LLM</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Quick Links</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/releases">Releases</a></li>
|
||
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM">Github Code</a></li>
|
||
<li class="toctree-l1"><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/issues?q=is%3Aissue%20state%3Aopen%20label%3Aroadmap">Roadmap</a></li>
|
||
</ul>
|
||
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Use TensorRT Engine</span></p>
|
||
<ul class="nav bd-sidenav">
|
||
<li class="toctree-l1"><a class="reference internal" href="../legacy/tensorrt_quickstart.html">LLM API with TensorRT Engine</a></li>
|
||
</ul>
|
||
</div>
|
||
</nav></div>
|
||
</div>
|
||
|
||
|
||
<div class="sidebar-primary-items__end sidebar-primary__section">
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
<main id="main-content" class="bd-main" role="main">
|
||
|
||
|
||
<div class="bd-content">
|
||
<div class="bd-article-container">
|
||
|
||
<div class="bd-header-article d-print-none">
|
||
<div class="header-article-items header-article__inner">
|
||
|
||
<div class="header-article-items__start">
|
||
|
||
<div class="header-article-item">
|
||
|
||
<nav aria-label="Breadcrumb" class="d-print-none">
|
||
<ul class="bd-breadcrumbs">
|
||
|
||
<li class="breadcrumb-item breadcrumb-home">
|
||
<a href="../index.html" class="nav-link" aria-label="Home">
|
||
<i class="fa-solid fa-home"></i>
|
||
</a>
|
||
</li>
|
||
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Parallelism in TensorRT LLM</span></li>
|
||
</ul>
|
||
</nav>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
|
||
<div id="searchbox"></div>
|
||
<article class="bd-article">
|
||
|
||
<section class="tex2jax_ignore mathjax_ignore" id="parallelism-in-tensorrt-llm">
|
||
<h1>Parallelism in TensorRT LLM<a class="headerlink" href="#parallelism-in-tensorrt-llm" title="Link to this heading">#</a></h1>
|
||
<p>Parallelism across multiple GPUs becomes necessary when either</p>
|
||
<ul class="simple">
|
||
<li><p>the model cannot fit in a single GPU’s memory, or</p></li>
|
||
<li><p>a single GPU cannot deliver the desired performance.</p></li>
|
||
</ul>
|
||
<p>TensorRT LLM supports multiple parallelism strategies for deployment on both single and multiple nodes:</p>
|
||
<ul class="simple">
|
||
<li><p><strong>Tensor Parallel (TP)</strong> - Shards model weights across GPUs</p></li>
|
||
<li><p><strong>Pipeline Parallel (PP)</strong> - Distributes model layers across GPUs</p></li>
|
||
<li><p><strong>Data Parallel (DP)</strong> - Replicates model across GPUs for different requests</p></li>
|
||
<li><p><strong>Expert Parallel (EP)</strong> - Distributes experts across GPUs for MoE models</p></li>
|
||
<li><p><strong>Context Parallel (CP)</strong> - Distributes context processing across GPUs</p></li>
|
||
<li><p><strong>Wide Expert Parallel (Wide-EP)</strong> - Advanced EP with load balancing for large-scale MoE models</p></li>
|
||
</ul>
|
||
<section id="overview-of-parallelism-strategies">
|
||
<h2>Overview of Parallelism Strategies<a class="headerlink" href="#overview-of-parallelism-strategies" title="Link to this heading">#</a></h2>
|
||
<section id="tensor-parallelism-tp">
|
||
<h3>Tensor Parallelism (TP)<a class="headerlink" href="#tensor-parallelism-tp" title="Link to this heading">#</a></h3>
|
||
<p>Tensor parallelism splits the model weights across multiple GPUs. Each GPU holds a portion of the weights and processes the same input tokens, with results combined through communication.</p>
|
||
<p><strong>Best for:</strong> Small batch sizes, memory-constrained scenarios</p>
|
||
</section>
|
||
<section id="pipeline-parallelism-pp">
|
||
<h3>Pipeline Parallelism (PP)<a class="headerlink" href="#pipeline-parallelism-pp" title="Link to this heading">#</a></h3>
|
||
<p>Pipeline parallelism distributes different layers of the model across multiple GPUs. Each GPU processes a subset of layers, with activations passed between GPUs.</p>
|
||
<p><strong>Best for:</strong> Large models that don’t fit in single GPU memory</p>
|
||
</section>
|
||
<section id="data-parallelism-dp">
|
||
<h3>Data Parallelism (DP)<a class="headerlink" href="#data-parallelism-dp" title="Link to this heading">#</a></h3>
|
||
<p>Data parallelism replicates the entire model across multiple GPUs. Each GPU processes different requests independently.</p>
|
||
<p><strong>Best for:</strong> Large batch sizes, high throughput scenarios</p>
|
||
</section>
|
||
<section id="expert-parallelism-ep">
|
||
<h3>Expert Parallelism (EP)<a class="headerlink" href="#expert-parallelism-ep" title="Link to this heading">#</a></h3>
|
||
<p>Expert parallelism is specifically designed for Mixture of Experts (MoE) models, where different experts are distributed across GPUs.</p>
|
||
<p><strong>Best for:</strong> MoE models with high expert count</p>
|
||
</section>
|
||
<section id="context-parallelism-cp">
|
||
<h3>Context Parallelism (CP)<a class="headerlink" href="#context-parallelism-cp" title="Link to this heading">#</a></h3>
|
||
<p>Context parallelism distributes the processing of long sequences across multiple GPUs.</p>
|
||
<p><strong>Best for:</strong> Long context scenarios</p>
|
||
</section>
|
||
<section id="wide-expert-parallelism-wide-ep">
|
||
<h3>Wide Expert Parallelism (Wide-EP)<a class="headerlink" href="#wide-expert-parallelism-wide-ep" title="Link to this heading">#</a></h3>
|
||
<p>Wide-EP is an advanced form of expert parallelism that addresses the inherent workload imbalance in large-scale MoE models through intelligent load balancing and expert replication.</p>
|
||
<p><strong>Best for:</strong> Large-scale MoE models like DeepSeek-V3/R1, LLaMA4, Qwen3</p>
|
||
</section>
|
||
</section>
|
||
<section id="module-level-parallelism-guide">
|
||
<h2>Module-level Parallelism Guide<a class="headerlink" href="#module-level-parallelism-guide" title="Link to this heading">#</a></h2>
|
||
<section id="attention-module">
|
||
<h3>Attention Module<a class="headerlink" href="#attention-module" title="Link to this heading">#</a></h3>
|
||
<p>TensorRT LLM supports two strategies for attention modules:</p>
|
||
<ul class="simple">
|
||
<li><p><strong>Tensor Parallelism (TP)</strong> — best for small batch sizes</p></li>
|
||
<li><p><strong>Data Parallelism (DP)</strong> — best for large batch sizes</p></li>
|
||
</ul>
|
||
<section id="id1">
|
||
<h4>Tensor Parallelism (TP)<a class="headerlink" href="#id1" title="Link to this heading">#</a></h4>
|
||
<ul class="simple">
|
||
<li><p>The GEMM weights before and after the attention kernel are evenly sharded across GPUs, as are the attention <code class="docutils literal notranslate"><span class="pre">num_heads</span></code>.</p></li>
|
||
<li><p>Exceptions:</p>
|
||
<ol class="arabic simple">
|
||
<li><p><strong>DeepSeek-R1</strong>: the <code class="docutils literal notranslate"><span class="pre">fused_A</span></code> GEMM is <em>not</em> sharded.</p></li>
|
||
<li><p><strong>GQA / MQA / MLA</strong>: if <code class="docutils literal notranslate"><span class="pre">num_heads</span> <span class="pre"><</span> <span class="pre">tensor_parallel_size</span></code>, the KV-cache is replicated on every GPU.</p></li>
|
||
</ol>
|
||
</li>
|
||
</ul>
|
||
</section>
|
||
<section id="id2">
|
||
<h4>Data Parallelism (DP)<a class="headerlink" href="#id2" title="Link to this heading">#</a></h4>
|
||
<ul class="simple">
|
||
<li><p>All GEMM weights are <strong>replicated</strong> on every GPU.</p></li>
|
||
<li><p>The KV-cache is <strong>partitioned</strong>, because different user requests are routed to different DP ranks.</p></li>
|
||
</ul>
|
||
</section>
|
||
<section id="how-to-enable-attention-parallelism">
|
||
<h4>How to Enable Attention Parallelism<a class="headerlink" href="#how-to-enable-attention-parallelism" title="Link to this heading">#</a></h4>
|
||
<p>To deploy a model with the above parallel strategies using <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code> or run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-bench</span></code>, create a YAML configuration file named <code class="docutils literal notranslate"><span class="pre">parallel_config.yaml</span></code>:</p>
|
||
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>cat<span class="w"> </span><span class="s"><<EOF > parallel_config.yaml</span>
|
||
<span class="s"># TP-8</span>
|
||
<span class="s">tensor_parallel_size: 8</span>
|
||
<span class="s">enable_attention_dp: false # default</span>
|
||
<span class="s"># DP-8</span>
|
||
<span class="s">tensor_parallel_size: 8</span>
|
||
<span class="s">enable_attention_dp: true</span>
|
||
<span class="s">EOF</span>
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
</section>
|
||
<section id="ffn-module">
|
||
<h3>FFN Module<a class="headerlink" href="#ffn-module" title="Link to this heading">#</a></h3>
|
||
<section id="dense-models">
|
||
<h4>Dense Models<a class="headerlink" href="#dense-models" title="Link to this heading">#</a></h4>
|
||
<p>Tensor Parallelism is supported for the FFN layers of dense models.</p>
|
||
</section>
|
||
<section id="mixture-of-experts-moe">
|
||
<h4>Mixture of Experts (MoE)<a class="headerlink" href="#mixture-of-experts-moe" title="Link to this heading">#</a></h4>
|
||
<p>MoE replaces a single FFN with multiple experts. A router selects the top-k experts for each token and dispatches the corresponding hidden states.</p>
|
||
<p>TensorRT LLM supports three execution patterns for MoE:</p>
|
||
<ul class="simple">
|
||
<li><p><strong>TP</strong> - Every expert’s weight matrix is sliced across all GPUs. Each GPU sees all tokens.</p></li>
|
||
<li><p><strong>EP</strong> - Full weights of each expert reside on a single GPU. Each GPU only sees tokens routed to its local experts.</p></li>
|
||
<li><p><strong>Hybrid ETP</strong> - Each GPU stores a subset of experts (EP) and shards those weights further (TP), balancing workload and kernel efficiency.</p></li>
|
||
</ul>
|
||
</section>
|
||
<section id="how-to-enable-moe-parallelism">
|
||
<h4>How to Enable MoE Parallelism<a class="headerlink" href="#how-to-enable-moe-parallelism" title="Link to this heading">#</a></h4>
|
||
<p>To deploy a model with the above parallel strategies using <code class="docutils literal notranslate"><span class="pre">trtllm-serve</span></code> or run benchmarking with <code class="docutils literal notranslate"><span class="pre">trtllm-bench</span></code>, create a YAML configuration file named <code class="docutils literal notranslate"><span class="pre">parallel_config.yaml</span></code> as follows:</p>
|
||
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>cat<span class="w"> </span><span class="s"><<EOF > parallel_config.yaml</span>
|
||
<span class="s"># TP only</span>
|
||
<span class="s">tensor_parallel_size: 8</span>
|
||
<span class="s">moe_tensor_parallel_size: 8</span>
|
||
|
||
<span class="s"># EP only</span>
|
||
<span class="s">tensor_parallel_size: 8</span>
|
||
<span class="s">moe_expert_parallel_size: 8</span>
|
||
|
||
<span class="s"># Hybrid (TP-4 × EP-2)</span>
|
||
<span class="s">tensor_parallel_size: 8 # 4 × 2</span>
|
||
<span class="s">moe_tensor_parallel_size: 4</span>
|
||
<span class="s">moe_expert_parallel_size: 2</span>
|
||
<span class="s">EOF</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="admonition note">
|
||
<p class="admonition-title">Note</p>
|
||
<p>The product of <code class="docutils literal notranslate"><span class="pre">moe_tensor_parallel_size</span></code> and <code class="docutils literal notranslate"><span class="pre">moe_expert_parallel_size</span></code> must equal <code class="docutils literal notranslate"><span class="pre">tensor_parallel_size</span></code>.</p>
|
||
</div>
|
||
</section>
|
||
</section>
|
||
</section>
|
||
<section id="id3">
|
||
<h2>Wide Expert Parallelism (Wide-EP)<a class="headerlink" href="#id3" title="Link to this heading">#</a></h2>
|
||
<p>Wide Expert Parallelism (Wide-EP) is TensorRT LLM’s advanced solution for large-scale MoE model inference. It addresses the challenges of traditional expert parallelism through intelligent load balancing and expert replication strategies.</p>
|
||
<section id="motivation-for-wide-ep">
|
||
<h3>Motivation for Wide-EP<a class="headerlink" href="#motivation-for-wide-ep" title="Link to this heading">#</a></h3>
|
||
<p>Large-scale MoE models like DeepSeek-V3/R1, LLaMA4, and Qwen3 use fine-grained expert designs that introduce new challenges:</p>
|
||
<ul class="simple">
|
||
<li><p><strong>High memory demands</strong> for expert weights</p></li>
|
||
<li><p><strong>Inherent expert-level workload imbalance</strong> due to sparse execution patterns</p></li>
|
||
<li><p><strong>Communication overhead</strong> in distributed expert parallelism</p></li>
|
||
<li><p><strong>Hot expert problem</strong> where certain experts receive significantly more tokens than others</p></li>
|
||
</ul>
|
||
</section>
|
||
<section id="key-features-of-wide-ep">
|
||
<h3>Key Features of Wide-EP<a class="headerlink" href="#key-features-of-wide-ep" title="Link to this heading">#</a></h3>
|
||
<section id="expert-replication-and-load-balancing">
|
||
<h4>1. Expert Replication and Load Balancing<a class="headerlink" href="#expert-replication-and-load-balancing" title="Link to this heading">#</a></h4>
|
||
<p>Wide-EP introduces the concept of <strong>expert slots</strong> that are decoupled from specific experts. This allows:</p>
|
||
<ul class="simple">
|
||
<li><p>Multiple replicas of hot experts across different GPUs</p></li>
|
||
<li><p>Dynamic expert placement based on workload patterns</p></li>
|
||
<li><p>Both offline and online load balancing strategies</p></li>
|
||
</ul>
|
||
</section>
|
||
<section id="custom-ep-communication-kernels">
|
||
<h4>2. Custom EP Communication Kernels<a class="headerlink" href="#custom-ep-communication-kernels" title="Link to this heading">#</a></h4>
|
||
<ul class="simple">
|
||
<li><p>Optimized for NVIDIA GB200 Multi-Node NVLink (MNNVL)</p></li>
|
||
<li><p>Efficient all-to-all communication for expert dispatch and combine</p></li>
|
||
<li><p>Reduced communication overhead compared to traditional EP</p></li>
|
||
</ul>
|
||
</section>
|
||
<section id="expert-parallelism-load-balancer-eplb">
|
||
<h4>3. Expert Parallelism Load Balancer (EPLB)<a class="headerlink" href="#expert-parallelism-load-balancer-eplb" title="Link to this heading">#</a></h4>
|
||
<ul class="simple">
|
||
<li><p><strong>Offline EPLB</strong>: Pre-computed expert placement based on historical workload statistics</p></li>
|
||
<li><p><strong>Online EPLB</strong>: Dynamic expert placement that adapts to real-time traffic patterns</p></li>
|
||
<li><p>Layer-wise weight redistribution to minimize inference disruption</p></li>
|
||
</ul>
|
||
</section>
|
||
</section>
|
||
<section id="architecture-overview">
|
||
<h3>Architecture Overview<a class="headerlink" href="#architecture-overview" title="Link to this heading">#</a></h3>
|
||
<p>Wide-EP separates the concepts of <strong>experts</strong> and <strong>slots</strong>:</p>
|
||
<ul class="simple">
|
||
<li><p><strong>Expert</strong>: The concept from the model’s perspective (e.g., Expert 0, Expert 1, etc.)</p></li>
|
||
<li><p><strong>Slot</strong>: The concept from the model engine’s perspective (e.g., Slot 0, Slot 1, etc.)</p></li>
|
||
</ul>
|
||
<p>The system maintains a routing table that maps Expert IDs to Slot IDs, which can be updated by the load balancing policy.</p>
|
||
</section>
|
||
<section id="best-practices">
|
||
<h3>Best Practices<a class="headerlink" href="#best-practices" title="Link to this heading">#</a></h3>
|
||
<ol class="arabic simple">
|
||
<li><p><strong>Start with offline EPLB</strong> for production deployments with known workload patterns</p></li>
|
||
<li><p><strong>Use online EPLB</strong> for dynamic workloads or when traffic patterns change frequently</p></li>
|
||
<li><p><strong>Monitor expert statistics</strong> to understand workload distribution</p></li>
|
||
<li><p><strong>Tune max_num_tokens</strong> based on your memory constraints and EP size</p></li>
|
||
<li><p><strong>Test with representative datasets</strong> to validate load balancing effectiveness</p></li>
|
||
</ol>
|
||
</section>
|
||
<section id="references">
|
||
<h3>References<a class="headerlink" href="#references" title="Link to this heading">#</a></h3>
|
||
<ul class="simple">
|
||
<li><p><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/blob/main/docs/source/blogs/tech_blog/blog4_Scaling_Expert_Parallelism_in_TensorRT-LLM.md">Technical Blog: Scaling Expert Parallelism in TensorRT LLM</a></p></li>
|
||
<li><p><a class="reference external" href="https://arxiv.org/abs/2412.19437">DeepSeek-V3 Paper</a></p></li>
|
||
<li><p><a class="reference external" href="https://github.com/deepseek-ai/EPLB">EPLB Implementation</a></p></li>
|
||
</ul>
|
||
<p>For detailed implementation examples and advanced usage, see:</p>
|
||
<ul class="simple">
|
||
<li><p><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/wide_ep/"><code class="docutils literal notranslate"><span class="pre">examples/wide_ep/</span></code></a>: Complete Wide-EP examples</p></li>
|
||
<li><p><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/wide_ep/ep_load_balancer/"><code class="docutils literal notranslate"><span class="pre">examples/wide_ep/ep_load_balancer/</span></code></a>: Load balancing tools</p></li>
|
||
<li><p><a class="reference external" href="https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/wide_ep/slurm_scripts/"><code class="docutils literal notranslate"><span class="pre">examples/wide_ep/slurm_scripts/</span></code></a>: Cluster deployment scripts</p></li>
|
||
</ul>
|
||
</section>
|
||
</section>
|
||
</section>
|
||
|
||
|
||
</article>
|
||
|
||
|
||
|
||
|
||
|
||
<footer class="prev-next-footer d-print-none">
|
||
|
||
<div class="prev-next-area">
|
||
<a class="left-prev"
|
||
href="paged-attention-ifb-scheduler.html"
|
||
title="previous page">
|
||
<i class="fa-solid fa-angle-left"></i>
|
||
<div class="prev-next-info">
|
||
<p class="prev-next-subtitle">previous</p>
|
||
<p class="prev-next-title">Paged Attention, IFB, and Request Scheduling</p>
|
||
</div>
|
||
</a>
|
||
<a class="right-next"
|
||
href="quantization.html"
|
||
title="next page">
|
||
<div class="prev-next-info">
|
||
<p class="prev-next-subtitle">next</p>
|
||
<p class="prev-next-title">Quantization</p>
|
||
</div>
|
||
<i class="fa-solid fa-angle-right"></i>
|
||
</a>
|
||
</div>
|
||
</footer>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
|
||
<dialog id="pst-secondary-sidebar-modal"></dialog>
|
||
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
|
||
|
||
|
||
<div class="sidebar-secondary-item">
|
||
<div
|
||
id="pst-page-navigation-heading-2"
|
||
class="page-toc tocsection onthispage">
|
||
<i class="fa-solid fa-list"></i> On this page
|
||
</div>
|
||
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
|
||
<ul class="visible nav section-nav flex-column">
|
||
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#overview-of-parallelism-strategies">Overview of Parallelism Strategies</a><ul class="nav section-nav flex-column">
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#tensor-parallelism-tp">Tensor Parallelism (TP)</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#pipeline-parallelism-pp">Pipeline Parallelism (PP)</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#data-parallelism-dp">Data Parallelism (DP)</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#expert-parallelism-ep">Expert Parallelism (EP)</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#context-parallelism-cp">Context Parallelism (CP)</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#wide-expert-parallelism-wide-ep">Wide Expert Parallelism (Wide-EP)</a></li>
|
||
</ul>
|
||
</li>
|
||
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#module-level-parallelism-guide">Module-level Parallelism Guide</a><ul class="nav section-nav flex-column">
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#attention-module">Attention Module</a><ul class="nav section-nav flex-column">
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#id1">Tensor Parallelism (TP)</a></li>
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#id2">Data Parallelism (DP)</a></li>
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#how-to-enable-attention-parallelism">How to Enable Attention Parallelism</a></li>
|
||
</ul>
|
||
</li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#ffn-module">FFN Module</a><ul class="nav section-nav flex-column">
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#dense-models">Dense Models</a></li>
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#mixture-of-experts-moe">Mixture of Experts (MoE)</a></li>
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#how-to-enable-moe-parallelism">How to Enable MoE Parallelism</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#id3">Wide Expert Parallelism (Wide-EP)</a><ul class="nav section-nav flex-column">
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#motivation-for-wide-ep">Motivation for Wide-EP</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#key-features-of-wide-ep">Key Features of Wide-EP</a><ul class="nav section-nav flex-column">
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#expert-replication-and-load-balancing">1. Expert Replication and Load Balancing</a></li>
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#custom-ep-communication-kernels">2. Custom EP Communication Kernels</a></li>
|
||
<li class="toc-h4 nav-item toc-entry"><a class="reference internal nav-link" href="#expert-parallelism-load-balancer-eplb">3. Expert Parallelism Load Balancer (EPLB)</a></li>
|
||
</ul>
|
||
</li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#architecture-overview">Architecture Overview</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#best-practices">Best Practices</a></li>
|
||
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#references">References</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</nav></div>
|
||
|
||
</div></div>
|
||
|
||
|
||
|
||
</div>
|
||
<footer class="bd-footer-content">
|
||
|
||
</footer>
|
||
|
||
</main>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<!-- Scripts loaded after <body> so the DOM is not blocked -->
|
||
<script defer src="../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
|
||
<script defer src="../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
|
||
|
||
|
||
<footer class="bd-footer">
|
||
<div class="bd-footer__inner bd-page-width">
|
||
|
||
<div class="footer-items__start">
|
||
|
||
<div class="footer-item">
|
||
<a class="footer-brand logo" href="https://www.nvidia.com">
|
||
<img src="../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
|
||
<img src="../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
|
||
</a></div>
|
||
|
||
<div class="footer-item">
|
||
|
||
<div class="footer-links">
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Your Privacy Choices</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
||
|
|
||
|
||
|
||
|
||
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
|
||
|
||
|
||
|
||
</div>
|
||
</div>
|
||
|
||
<div class="footer-item">
|
||
|
||
|
||
|
||
|
||
<p class="copyright">
|
||
|
||
Copyright © 2025, NVidia.
|
||
<br/>
|
||
|
||
</p>
|
||
</div>
|
||
|
||
<div class="footer-item">
|
||
<div class="extra_footer">
|
||
|
||
<p>Last updated on November 23, 2025.</p>
|
||
|
||
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/a761585">a761585</a>.</p>
|
||
|
||
</div></div>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</footer>
|
||
</body>
|
||
</html> |