TensorRT-LLMs/examples/layer_wise_benchmarks/run.py
Tailing Yuan a7fe043b13
[None][feat] Layer-wise benchmarks: support TEP balance, polish slurm scripts (#10237)
Signed-off-by: Tailing Yuan <yuantailing@gmail.com>
2026-01-05 11:23:04 +08:00

329 lines
12 KiB
Python

import argparse
import itertools
import json
import os
from unittest import mock
import numpy as np
import nvtx
import torch
import yaml
from tensorrt_llm._torch.autotuner import AutoTuner, autotune
from tensorrt_llm._torch.modules.fused_moe.fused_moe_cutlass import CutlassFusedMoE
from tensorrt_llm._torch.modules.fused_moe.interface import AlltoallMethodType
from tensorrt_llm._torch.modules.multi_stream_utils import with_multi_stream
from tensorrt_llm._utils import local_mpi_rank, mpi_rank, mpi_world_size
from tensorrt_llm.logger import logger
from tensorrt_llm.tools.layer_wise_benchmarks import BalanceMethod, get_runner_cls, mark_ranges
def comma_separated_ints(s):
return [int(x) for x in s.split(",")]
def comma_separated_floats(s):
return [float(x) for x in s.split(",")]
# Parse cmdline
parser = argparse.ArgumentParser()
parser.add_argument("config_path", type=str)
parser.add_argument("--model", type=str, help="Pretrained model name or path")
parser.add_argument(
"--layer-indices",
type=comma_separated_ints,
help="Comma separated indices of layers, should be a contiguous range",
)
parser.add_argument("--run-type", type=str, choices=["CTX", "GEN"])
parser.add_argument("--scaled-from", type=int)
# KV cache related args
parser.add_argument("--max-batch-size", type=int)
parser.add_argument("--tokens-per-block", type=int)
parser.add_argument("--max-seq-len", type=int)
group = parser.add_mutually_exclusive_group()
group.add_argument("--enable-attention-dp", action="store_true", dest="enable_attention_dp")
group.add_argument("--no-enable-attention-dp", action="store_false", dest="enable_attention_dp")
parser.set_defaults(enable_attention_dp=None)
# Model init args
parser.add_argument("--max-num-tokens", type=int)
parser.add_argument("--moe-backend", type=str)
parser.add_argument("--moe-max-num-tokens", type=int)
group = parser.add_mutually_exclusive_group()
group.add_argument(
"--use-low-precision-moe-combine", action="store_true", dest="use_low_precision_moe_combine"
)
group.add_argument(
"--no-use-low-precision-moe-combine",
action="store_false",
dest="use_low_precision_moe_combine",
)
parser.set_defaults(use_low_precision_moe_combine=None)
group = parser.add_mutually_exclusive_group()
group.add_argument("--enable-autotuner", action="store_true", dest="enable_autotuner")
group.add_argument("--no-enable-autotuner", action="store_false", dest="enable_autotuner")
parser.set_defaults(enable_autotuner=None)
group = parser.add_mutually_exclusive_group()
group.add_argument("--use-cuda-graph", action="store_true", dest="use_cuda_graph")
group.add_argument("--no-use-cuda-graph", action="store_false", dest="use_cuda_graph")
parser.set_defaults(use_cuda_graph=None)
# Per iteration args
parser.add_argument("--batch-size", type=comma_separated_ints, dest="batch_size_list")
parser.add_argument("--seq-len-q", type=comma_separated_ints, dest="seq_len_q_list")
parser.add_argument("--seq-len-kv-cache", type=comma_separated_ints, dest="seq_len_kv_cache_list")
parser.add_argument("--balance-method", type=str)
parser.add_argument("--balance-ratio", type=comma_separated_floats, dest="balance_ratio_list")
# Schedule
parser.add_argument("--warmup-times", type=int, default=20)
parser.add_argument("--run-times", type=int, default=100)
args = parser.parse_args()
# Load YAML file
with open(args.config_path) as f:
config = yaml.safe_load(f)
del args.config_path
for k, v in vars(args).items():
if k.endswith("_list"):
config_key = k[: -len("_list")]
if v is None and config_key in config:
v = config[config_key]
if isinstance(v, list):
pass
elif v is None or isinstance(v, (int, float)):
v = [v]
else:
raise ValueError(f'Config "{config_key}" in YAML should be a value or a list')
setattr(args, k, v)
else:
config_key = k
if v is None and config_key in config:
v = config[config_key]
setattr(args, k, v)
if config_key in config:
del config[config_key]
if config:
raise ValueError(f"Config {','.join(config.keys())} from file are not options")
# Set default values
if args.max_batch_size is None:
args.max_batch_size = max(args.batch_size_list)
if args.max_seq_len is None:
args.max_seq_len = max(args.seq_len_q_list) + max(args.seq_len_kv_cache_list)
if args.enable_attention_dp is None:
args.enable_attention_dp = False
if args.max_num_tokens is None:
args.max_num_tokens = args.max_batch_size * max(args.seq_len_q_list)
if args.use_low_precision_moe_combine is None:
args.use_low_precision_moe_combine = False
if args.enable_autotuner is None:
args.enable_autotuner = True
if args.use_cuda_graph is None:
args.use_cuda_graph = False
print(args)
# MPI args
rank = mpi_rank()
world_size = mpi_world_size()
local_rank = local_mpi_rank()
torch.cuda.set_device(local_rank)
# Create KV cache manager
logger.info("Layer-wise benchmarks: Create KV cache manager")
Runner = get_runner_cls(args.model)
mapping = Runner.create_mapping(enable_attention_dp=args.enable_attention_dp)
kv_cache_manager = Runner.create_kv_cache_manager(
args.model,
mapping,
tokens_per_block=args.tokens_per_block,
max_batch_size=args.max_batch_size,
max_seq_len=args.max_seq_len,
layer_indices=args.layer_indices,
)
attn_workspace = torch.empty((0,), device="cuda", dtype=torch.int8)
logger.info("Layer-wise benchmarks: Create KV cache manager ... Done")
# Create other global objects
AutoTuner.get().clear_cache()
capture_stream = torch.cuda.Stream()
mark_ranges()
# Create runner
logger.info("Layer-wise benchmarks: Create runner")
runner = Runner(
args.model,
mapping,
moe_backend=args.moe_backend,
layer_indices=args.layer_indices,
scaled_from=args.scaled_from,
max_seq_len=args.max_seq_len,
max_num_tokens=args.max_num_tokens,
moe_max_num_tokens=args.moe_max_num_tokens,
use_low_precision_moe_combine=args.use_low_precision_moe_combine,
use_cuda_graph=args.use_cuda_graph,
)
logger.info("Layer-wise benchmarks: Create runner ... Done")
# Autotune
run_pack = runner.create_run_pack(
args.run_type,
batch_size=max(args.batch_size_list),
request_id_begin=0,
seq_len_q=max(args.seq_len_q_list),
seq_len_kv_cache=args.seq_len_kv_cache_list[0],
kv_cache_manager=kv_cache_manager,
attn_workspace=attn_workspace,
)
if args.enable_autotuner:
cache_path = os.getenv("TLLM_AUTOTUNER_CACHE_PATH") or None
with autotune(cache_path=cache_path):
run_pack()
else:
run_pack()
# Prefill KV cache
if args.run_type == "GEN":
logger.info("Layer-wise benchmarks: Create runner for prefill")
ctx_seq_len_q = max(args.seq_len_kv_cache_list)
ctx_batch_size = min(
args.max_batch_size,
max(1, 20480 // ctx_seq_len_q),
)
ctx_attn_workspace = torch.empty((0,), device="cuda", dtype=torch.int8)
with mock.patch.object(
CutlassFusedMoE, "select_alltoall_method_type", return_value=AlltoallMethodType.NotEnabled
):
ctx_runner = Runner(
args.model,
mapping,
moe_backend="CUTLASS",
layer_indices=args.layer_indices,
scaled_from=args.scaled_from,
max_seq_len=args.max_seq_len,
max_num_tokens=ctx_batch_size * ctx_seq_len_q,
moe_max_num_tokens=16384,
use_low_precision_moe_combine=args.use_low_precision_moe_combine,
use_cuda_graph=False,
)
logger.info("Layer-wise benchmarks: Create runner for prefill ... Done")
logger.info("Layer-wise benchmarks: Prefill KV cache")
assert ctx_batch_size <= args.max_batch_size
assert ctx_seq_len_q + 0 <= args.max_seq_len
num_requests = max(args.batch_size_list)
for request_id_begin in range(0, num_requests, ctx_batch_size):
run_pack = ctx_runner.create_run_pack(
"CTX",
batch_size=min(ctx_batch_size, num_requests - request_id_begin),
request_id_begin=request_id_begin,
seq_len_q=ctx_seq_len_q,
seq_len_kv_cache=0,
kv_cache_manager=kv_cache_manager,
attn_workspace=ctx_attn_workspace,
)
with ctx_runner.replace_routing_method_ctx(
balance_method=BalanceMethod.Balanced, balance_ratio=None
):
run_pack(check=True)
del ctx_runner
del ctx_attn_workspace
logger.info("Layer-wise benchmarks: Prefill KV cache ... Done")
# Warm up
logger.info("Layer-wise benchmarks: Warmup")
for batch_size, seq_len_q, seq_len_kv_cache, balance_ratio in [
*itertools.product(
args.batch_size_list,
args.seq_len_q_list,
args.seq_len_kv_cache_list,
args.balance_ratio_list,
),
]:
assert batch_size <= args.max_batch_size
assert seq_len_q + seq_len_kv_cache <= args.max_seq_len
assert batch_size * seq_len_q <= args.max_num_tokens
run_pack = runner.create_run_pack(
args.run_type,
batch_size=batch_size,
request_id_begin=0,
seq_len_q=seq_len_q,
seq_len_kv_cache=seq_len_kv_cache,
kv_cache_manager=kv_cache_manager,
attn_workspace=attn_workspace,
)
with runner.replace_routing_method_ctx(
balance_method=BalanceMethod[args.balance_method], balance_ratio=balance_ratio
):
capture_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(capture_stream):
run_pack(check=True)
torch.cuda.current_stream().wait_stream(capture_stream)
torch.cuda.synchronize()
logger.info("Layer-wise benchmarks: Warmup ... Done")
events = [
torch.cuda.Event(enable_timing=True) for _ in range(args.warmup_times + args.run_times + 1)
]
[e.record() for e in events] # Explicitly warmup events because torch is lazy
torch.cuda.cudart().cudaProfilerStart()
with nvtx.annotate(f"layer_wise_benchmarks args {json.dumps(args.__dict__)}"):
pass # Use `annotate` instead of `mark` to avoid addition lines on the Nsight Systems UI
for batch_size, seq_len_q, seq_len_kv_cache, balance_ratio in itertools.product(
args.batch_size_list, args.seq_len_q_list, args.seq_len_kv_cache_list, args.balance_ratio_list
):
# Profile: capture graph and replay it
problem_spec = {
"batch_size": batch_size,
"seq_len_q": seq_len_q,
"seq_len_kv_cache": seq_len_kv_cache,
"balance_ratio": balance_ratio,
}
with nvtx.annotate(f"layer_wise_benchmarks problem_spec {json.dumps(problem_spec)}"):
pass
run_pack = runner.create_run_pack(
args.run_type,
batch_size=batch_size,
request_id_begin=0,
seq_len_q=seq_len_q,
seq_len_kv_cache=seq_len_kv_cache,
kv_cache_manager=kv_cache_manager,
attn_workspace=attn_workspace,
)
with runner.replace_routing_method_ctx(
balance_method=BalanceMethod[args.balance_method], balance_ratio=balance_ratio
):
if args.use_cuda_graph:
with with_multi_stream(True):
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g, stream=capture_stream, capture_error_mode="global"):
run_pack()
balance_ratio_str = "" if balance_ratio is None else f" balance={balance_ratio:.2g}"
nvtx_message = f"b={batch_size} s={seq_len_q} past={seq_len_kv_cache}{balance_ratio_str} NP{world_size}"
for i in range(args.warmup_times + args.run_times):
events[i].record()
with nvtx.annotate(nvtx_message):
if args.use_cuda_graph:
g.replay()
else:
run_pack()
events[-1].record()
torch.cuda.synchronize()
# Print statistics
# Print before `cudaProfilerStop` to ensure messages are included in the profile
time_list = [start.elapsed_time(stop) for start, stop in zip(events, events[1:])]
time_list = time_list[args.warmup_times :]
print(
f"[RANK {rank}]"
f" batch_size {batch_size}"
f" seq_len_q {seq_len_q}"
f" seq_len_kv_cache {seq_len_kv_cache}"
+ ("" if balance_ratio is None else f" balance_ratio {balance_ratio:.2g}")
+ f" mean {np.mean(time_list) * 1000:.1f}"
f" median {np.median(time_list) * 1000:.1f}"
f" min {np.min(time_list) * 1000:.1f}"
f" max {np.max(time_list) * 1000:.1f}"
f" P90 {np.percentile(time_list, 90) * 1000:.1f}"
f" (us)"
)
torch.cuda.cudart().cudaProfilerStop()