TensorRT-LLMs/cpp/tensorrt_llm/thop/fp8Op.h
Yukun He bb7bcc75c2
feat: Fallback to NCCL for various patterns when input size is large. (#4080)
* Fallback to NCCL for various patterns when input size is large.
Move the previous implementation to cpp side.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Revising.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

---------

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-05-08 11:13:13 -07:00

45 lines
1.8 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <cuda_fp16.h>
#include <cstdint>
namespace torch_ext
{
std::tuple<torch::Tensor, torch::Tensor> symmetric_quantize_weight(torch::Tensor weight);
std::tuple<torch::Tensor, torch::Tensor> symmetric_quantize_activation(torch::Tensor activation);
std::tuple<torch::Tensor, torch::Tensor> symmetric_quantize_per_tensor(torch::Tensor input);
std::tuple<torch::Tensor, torch::Tensor> symmetric_static_quantize_weight(torch::Tensor weight, torch::Tensor scales);
std::tuple<torch::Tensor, torch::Tensor> symmetric_static_quantize_activation(
torch::Tensor activation, torch::Tensor scales);
std::tuple<torch::Tensor, torch::Tensor> symmetric_static_quantize_per_tensor(
torch::Tensor input, torch::Tensor scales);
torch::Tensor symmetric_dequantize_weight(torch::Tensor weight, torch::Tensor scales);
torch::Tensor symmetric_dequantize_activation(torch::Tensor activation, torch::Tensor scales);
torch::Tensor symmetric_dequantize_per_tensor(torch::Tensor input, torch::Tensor scales);
} // namespace torch_ext