TensorRT-LLMs/tensorrt_llm/bench/dataclasses/configuration.py
Kaiyu Xie aaacc9bd68
Update TensorRT-LLM (#2562)
* Update TensorRT-LLM

---------

Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
2024-12-11 00:31:05 -08:00

182 lines
6.8 KiB
Python

from __future__ import annotations
from importlib.util import find_spec
from pathlib import Path
from typing import List, Optional, Union
from pydantic import (BaseModel, Field, PositiveFloat, field_validator,
model_validator)
import tensorrt_llm.bindings.executor as trtllm
from tensorrt_llm.bench.dataclasses.enums import IFBSchedulingPolicy
from tensorrt_llm.llmapi.llm_utils import LlmArgs
from tensorrt_llm.models.modeling_utils import SpeculativeDecodingMode
SPECULATIVE_MAP = {
SpeculativeDecodingMode.NONE: lambda *args: None,
SpeculativeDecodingMode.MEDUSA: trtllm.DecodingMode.Medusa,
}
class RuntimeConfig(BaseModel):
model: str
engine_dir: Path
sw_version: str
settings_config: ExecutorSettingsConfig
world_config: ExecutorWorldConfig
decoding_config: DecodingConfig
performance_options: PerformanceOptions
def get_config(self) -> trtllm.ExecutorConfig:
return trtllm.ExecutorConfig(
batching_type=trtllm.BatchingType.INFLIGHT,
decoding_config=self.decoding_config.get_decoding_config(),
enable_chunked_context=self.settings_config.chunking,
extended_runtime_perf_knob_config=self.performance_options.
get_perf_config(),
iter_stats_max_iterations=0,
kv_cache_config=self.settings_config.get_kvcache_config(),
max_batch_size=self.settings_config.max_batch_size,
max_num_tokens=self.settings_config.max_num_tokens,
parallel_config=self.world_config.get_parallel_config(),
request_stats_max_iterations=0,
scheduler_config=self.settings_config.get_scheduler_config(),
)
def get_llm_args(self) -> LlmArgs:
return LlmArgs(
scheduler_config=self.settings_config.get_scheduler_config(),
model=self.engine_dir,
skip_tokenizer_init=True,
pipeline_parallel_size=self.world_config.pp_size,
tensor_parallel_size=self.world_config.tp_size,
trust_remote_code=True,
kv_cache_config=self.settings_config.get_kvcache_config(),
enable_chunked_prefill=self.settings_config.chunking,
extended_runtime_perf_knob_config=self.performance_options.
get_perf_config(),
decoding_config=self.decoding_config.get_decoding_config(),
batching_type=trtllm.BatchingType.INFLIGHT,
runtime_max_batch_size=self.settings_config.max_batch_size,
runtime_max_num_tokens=self.settings_config.max_num_tokens,
)
@model_validator(mode="after")
def validate_full_config(self) -> RuntimeConfig:
# TODO: Check engine to make sure it can support Medusa.
return self
class PerformanceOptions(BaseModel):
cuda_graphs: bool = False
multi_block_mode: bool = True
cuda_graph_cache_size: int = 1000
def get_perf_config(self) -> trtllm.ExtendedRuntimePerfKnobConfig:
config = trtllm.ExtendedRuntimePerfKnobConfig()
config.cuda_graph_mode = self.cuda_graphs
config.multi_block_mode = self.multi_block_mode
config.cuda_graph_cache_size = self.cuda_graph_cache_size
return config
class DecodingConfig(BaseModel):
medusa_choices: Optional[List[List[int]]] = None
decoding_mode: SpeculativeDecodingMode = SpeculativeDecodingMode.NONE
@field_validator("decoding_mode")
@classmethod
def decoding_mode_validator(
cls, value: Union[str, int,
SpeculativeDecodingMode]) -> SpeculativeDecodingMode:
return SpeculativeDecodingMode(value)
@model_validator(mode="after")
def validate_speculative_decoding(self) -> DecodingConfig:
if self.medusa_choices and self.decoding_mode != SpeculativeDecodingMode.MEDUSA:
raise RuntimeError(
"Attempting to use set Medusa choices with a non-Medusa engine."
" Verify that you are using a Medusa engine.")
return self
def get_decoding_config(self) -> trtllm.DecodingConfig:
"""Create a populated TRT-LLM DecodingConfig."""
kwargs = {"decoding_mode": SPECULATIVE_MAP[self.decoding_mode]()}
if self.medusa_choices is not None:
kwargs["medusa_choices"] = self.medusa_choices
return trtllm.DecodingConfig(**kwargs)
class ExecutorWorldConfig(BaseModel):
pp_size: int = 1
tp_size: int = 1
world_size: int = 1
gpus_per_node: int = 8
leader_mode: bool = False
@model_validator(mode="after")
def validate_world_size(self) -> ExecutorWorldConfig:
parallel_world = self.pp_size * self.tp_size
num_gpus = self.world_size * self.gpus_per_node
valid_world = bool(num_gpus >= parallel_world)
if not valid_world:
raise ValueError(
f"World configuration is invalid, TP * PP ({parallel_world})"
"does not equal the total number of available GPUs"
f"({num_gpus}).")
return self
def _get_tensorrt_llm_executor_worker_path(self) -> Path:
module_path = find_spec("tensorrt_llm").loader.get_filename()
exec_path = Path(module_path).parent / 'bin' / 'executorWorker'
return exec_path.absolute()
def get_parallel_config(self) -> trtllm.ParallelConfig:
if self.leader_mode:
comm_mode = trtllm.CommunicationMode.LEADER
orchestrator_config = None
else:
comm_mode = trtllm.CommunicationMode.ORCHESTRATOR
orchestrator_config = trtllm.OrchestratorConfig(
True, str(self._get_tensorrt_llm_executor_worker_path()))
return trtllm.ParallelConfig(
trtllm.CommunicationType.MPI,
comm_mode,
orchestrator_config=orchestrator_config,
)
class ExecutorSettingsConfig(BaseModel):
chunking: bool = True
scheduler_policy: IFBSchedulingPolicy = IFBSchedulingPolicy.MAX_UTILIZTION
max_batch_size: int
max_num_tokens: int
kv_cache_percent: PositiveFloat = Field(default=.90, le=1.0)
kv_cache_reuse: bool = False
dynamic_max_batch_size: bool = True
def get_dynamic_config(self) -> trtllm.DynamicBatchConfig:
window_size = 128 if self.dynamic_max_batch_size else 0
return trtllm.DynamicBatchConfig(self.dynamic_max_batch_size,
window_size)
def get_kvcache_config(self) -> trtllm.KvCacheConfig:
return trtllm.KvCacheConfig(
free_gpu_memory_fraction=self.kv_cache_percent,
enable_block_reuse=False,
)
def get_scheduler_config(self) -> trtllm.SchedulerConfig:
return trtllm.SchedulerConfig(
capacity_scheduler_policy=self.scheduler_policy.value,
context_chunking_policy=trtllm.ContextChunkingPolicy.
FIRST_COME_FIRST_SERVED,
)