mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Starrick Liu <73152103+StarrickLiu@users.noreply.github.com>
363 lines
10 KiB
Python
363 lines
10 KiB
Python
import asyncio
|
|
import hashlib
|
|
import io
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import threading
|
|
import traceback
|
|
import weakref
|
|
from functools import cache, wraps
|
|
from pathlib import Path
|
|
from queue import Queue
|
|
from typing import Any, Callable, List, Optional, Tuple
|
|
|
|
import filelock
|
|
import huggingface_hub
|
|
import torch
|
|
from huggingface_hub import snapshot_download
|
|
from tqdm.auto import tqdm
|
|
|
|
from tensorrt_llm.logger import Singleton, logger
|
|
|
|
|
|
def print_traceback_on_error(func):
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
try:
|
|
return func(*args, **kwargs)
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
raise e
|
|
|
|
return wrapper
|
|
|
|
|
|
def print_colored(message,
|
|
color: Optional[str] = None,
|
|
writer: io.TextIOWrapper = sys.stderr):
|
|
colors = dict(
|
|
grey="\x1b[38;20m",
|
|
yellow="\x1b[33;20m",
|
|
red="\x1b[31;20m",
|
|
bold_red="\x1b[31;1m",
|
|
bold_green="\033[1;32m",
|
|
green="\033[0;32m",
|
|
)
|
|
reset = "\x1b[0m"
|
|
|
|
if color:
|
|
writer.write(colors[color] + message + reset)
|
|
else:
|
|
writer.write(message)
|
|
|
|
|
|
def file_with_glob_exists(directory, glob) -> bool:
|
|
path = Path(directory)
|
|
for file_path in path.glob(glob):
|
|
if file_path.is_file():
|
|
return True
|
|
return False
|
|
|
|
|
|
def file_with_suffix_exists(directory, suffix) -> bool:
|
|
return file_with_glob_exists(directory, f'*{suffix}')
|
|
|
|
|
|
def get_device_count() -> int:
|
|
return torch.cuda.device_count() if torch.cuda.is_available() else 0
|
|
|
|
|
|
def get_total_gpu_memory(device: int) -> float:
|
|
return torch.cuda.get_device_properties(device).total_memory
|
|
|
|
|
|
class GpuArch:
|
|
|
|
@staticmethod
|
|
def get_arch() -> int:
|
|
return get_gpu_arch()
|
|
|
|
@staticmethod
|
|
def is_post_hopper() -> bool:
|
|
return get_gpu_arch() >= 9
|
|
|
|
@staticmethod
|
|
def is_post_ampere() -> bool:
|
|
return get_gpu_arch() >= 8
|
|
|
|
@staticmethod
|
|
def is_post_volta() -> bool:
|
|
return get_gpu_arch() >= 7
|
|
|
|
|
|
def get_gpu_arch(device: int = 0) -> int:
|
|
return torch.cuda.get_device_properties(device).major
|
|
|
|
|
|
class ContextManager:
|
|
''' A helper to create a context manager for a resource. '''
|
|
|
|
def __init__(self, resource):
|
|
self.resource = resource
|
|
|
|
def __enter__(self):
|
|
return self.resource.__enter__()
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
return self.resource.__exit__(exc_type, exc_value, traceback)
|
|
|
|
|
|
def is_directory_empty(directory: Path) -> bool:
|
|
return not any(directory.iterdir())
|
|
|
|
|
|
class ExceptionHandler(metaclass=Singleton):
|
|
|
|
def __init__(self):
|
|
self._sys_excepthook: Callable = sys.excepthook
|
|
self._obj_refs_and_callbacks: List[Tuple[weakref.ReferenceType,
|
|
str]] = []
|
|
|
|
def __call__(self, exc_type, exc_value, traceback):
|
|
self._sys_excepthook(exc_type, exc_value, traceback)
|
|
|
|
for obj_ref, callback_name in self._obj_refs_and_callbacks:
|
|
if (obj := obj_ref()) is not None:
|
|
callback = getattr(obj, callback_name)
|
|
callback()
|
|
|
|
def register(self, obj: Any, callback_name: str):
|
|
assert callable(getattr(obj, callback_name, None))
|
|
self._obj_refs_and_callbacks.append((weakref.ref(obj), callback_name))
|
|
|
|
|
|
exception_handler = ExceptionHandler()
|
|
sys.excepthook = exception_handler
|
|
|
|
# Use the system temporary directory to share the cache
|
|
temp_dir = tempfile.gettempdir()
|
|
|
|
|
|
def get_file_lock(model_name: str,
|
|
cache_dir: Optional[str] = None) -> filelock.FileLock:
|
|
# Hash the model name to avoid invalid characters in the lock file path
|
|
hashed_model_name = hashlib.sha256(model_name.encode()).hexdigest()
|
|
|
|
cache_dir = cache_dir or temp_dir
|
|
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
lock_file_path = os.path.join(cache_dir, f"{hashed_model_name}.lock")
|
|
|
|
return filelock.FileLock(lock_file_path)
|
|
|
|
|
|
class DisabledTqdm(tqdm):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs, disable=True)
|
|
|
|
|
|
def download_hf_model(model: str, revision: Optional[str] = None) -> Path:
|
|
with get_file_lock(model):
|
|
hf_folder = snapshot_download(
|
|
model,
|
|
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
|
revision=revision,
|
|
tqdm_class=DisabledTqdm)
|
|
return Path(hf_folder)
|
|
|
|
|
|
def download_hf_pretrained_config(model: str,
|
|
revision: Optional[str] = None) -> Path:
|
|
with get_file_lock(model):
|
|
hf_folder = snapshot_download(
|
|
model,
|
|
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
|
|
revision=revision,
|
|
allow_patterns=["config.json"],
|
|
tqdm_class=DisabledTqdm)
|
|
return Path(hf_folder)
|
|
|
|
|
|
def append_docstring(docstring: str):
|
|
''' A decorator to append a docstring to a function. '''
|
|
|
|
def decorator(fn):
|
|
fn.__doc__ = (fn.__doc__ or '') + docstring
|
|
return fn
|
|
|
|
return decorator
|
|
|
|
|
|
def set_docstring(docstring: str):
|
|
''' A decorator to set a docstring to a function. '''
|
|
|
|
def decorator(fn):
|
|
fn.__doc__ = docstring
|
|
return fn
|
|
|
|
return decorator
|
|
|
|
|
|
def get_directory_size_in_gb(directory: Path) -> float:
|
|
""" Get the size of the directory. """
|
|
if not (directory.is_dir() and directory.exists()):
|
|
raise ValueError(f"{directory} is not a directory.")
|
|
total_size = 0
|
|
for dirpath, dirnames, filenames in os.walk(directory):
|
|
for f in filenames:
|
|
fp = os.path.join(dirpath, f)
|
|
total_size += os.path.getsize(fp)
|
|
return total_size / 1024**3 # GB
|
|
|
|
|
|
class ManagedThread(threading.Thread):
|
|
""" A thread that will put exceptions into an external queue if the task fails.
|
|
|
|
There are two approaches to stop the thread:
|
|
1. Set stop_event to stop the loop
|
|
2. Let `task` return False
|
|
|
|
Args:
|
|
task (Callable[..., bool]): The task to run repeatedly in the thread, should return False if break the loop.
|
|
error_queue (Queue): The queue to put exceptions into if the task fails.
|
|
name (str): The name of the thread.
|
|
**kwargs: The arguments to pass to the task
|
|
"""
|
|
|
|
def __init__(self,
|
|
task: Callable[..., bool],
|
|
error_queue: Queue,
|
|
name: Optional[str] = None,
|
|
**kwargs):
|
|
super().__init__(name=name)
|
|
self.task = task
|
|
self.error_queue = error_queue
|
|
self.kwargs = kwargs
|
|
self.daemon = True
|
|
|
|
self.stop_event = threading.Event()
|
|
|
|
def run(self):
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
if not self.task(**self.kwargs):
|
|
break
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error in thread {self.name}: {e}\n{traceback.format_exc()}"
|
|
)
|
|
self.error_queue.put(e)
|
|
|
|
logger.info(f"Thread {self.name} stopped.")
|
|
|
|
def stop(self):
|
|
self.stop_event.set()
|
|
|
|
|
|
@cache
|
|
def enable_llm_debug() -> bool:
|
|
''' Tell whether to enable the debug mode for LLM class. '''
|
|
return os.environ.get("TLLM_LLM_ENABLE_DEBUG", "0") == "1"
|
|
|
|
|
|
class AsyncQueue:
|
|
'''
|
|
AsyncQueue is container containing `async_q` for `async get` and `sync_q` for sync `get`.
|
|
This is used to provide a compatible interface for janus.Queue.
|
|
'''
|
|
|
|
class EventLoopShutdownError(Exception):
|
|
pass
|
|
|
|
def __init__(self):
|
|
self._q = Queue()
|
|
self.async_q = _AsyncQueue(self._q)
|
|
self.sync_q = _SyncQueue(self._q, self.async_q._event)
|
|
|
|
|
|
class _SyncQueue:
|
|
'''
|
|
A simplified Queue that provides a `put` method that is compatible with the asyncio event loop.
|
|
'''
|
|
|
|
def __init__(self,
|
|
queue: Queue,
|
|
event: asyncio.Event,
|
|
loop: Optional[asyncio.AbstractEventLoop] = None):
|
|
self._q = queue
|
|
self._event = event
|
|
self._loop = loop or asyncio.get_event_loop()
|
|
|
|
def put(self, item) -> None:
|
|
|
|
async def _set_event(event):
|
|
event.set()
|
|
|
|
self._q.put_nowait(item)
|
|
|
|
if self._loop.is_running():
|
|
asyncio.run_coroutine_threadsafe(_set_event(self._event),
|
|
self._loop)
|
|
else:
|
|
raise AsyncQueue.EventLoopShutdownError
|
|
|
|
def put_nowait(self, item) -> None:
|
|
''' Put item without notify the event. '''
|
|
self._q.put_nowait(item)
|
|
|
|
@staticmethod
|
|
def notify_events(loop: asyncio.AbstractEventLoop,
|
|
events: List[asyncio.Event]) -> None:
|
|
''' Notify the events in the loop. '''
|
|
|
|
async def _set_events(events):
|
|
for event in events:
|
|
event.set()
|
|
|
|
if loop.is_running():
|
|
asyncio.run_coroutine_threadsafe(_set_events(events), loop)
|
|
else:
|
|
raise AsyncQueue.EventLoopShutdownError
|
|
|
|
@property
|
|
def loop(self) -> asyncio.AbstractEventLoop:
|
|
return self._loop
|
|
|
|
@property
|
|
def event(self) -> asyncio.Event:
|
|
return self._event
|
|
|
|
def full(self) -> bool:
|
|
return self._q.full()
|
|
|
|
def get(self, timeout=None):
|
|
# Here is the WAR for jupyter scenario where trt-llm detects the event loop existence.
|
|
# However, this event loop launched by jupyter rather than trt-llm. It led the GenerationResult initialized
|
|
# w/ AsyncQueue and call the get() unintentionally.
|
|
res = self._q.get()
|
|
if self._q.empty():
|
|
self._event.clear()
|
|
return res
|
|
|
|
|
|
class _AsyncQueue:
|
|
'''
|
|
A simplified asyncio.Queue that provides a `get` method that is compatible with the standard library Queue.
|
|
'''
|
|
|
|
def __init__(self, queue: Queue):
|
|
self._event = asyncio.Event()
|
|
self._q = queue
|
|
|
|
async def get(self, timeout=None):
|
|
# This may raise asyncio.TimeoutError
|
|
await asyncio.wait_for(self._event.wait(), timeout=timeout)
|
|
|
|
res = self._q.get()
|
|
if self._q.empty():
|
|
self._event.clear()
|
|
return res
|