TensorRT-LLMs/cpp/tensorrt_llm/thop/moeOp.cpp
Yukun He ab2f663101
fix: Reduce memory usage in fused moe op associated with AutoTuning and fix moe fallback issue. (#3793)
* Reduce memory usage in fused moe op associated with AutoTuning.
* Replace pre-defined bucket size strategy with a generating function based on the tune_max_num_tokens.
* Add free_memory logic of workspace in min_latency_mode fused moe path.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

* Fix fused_moe fallback issue. (#3652)

min_latency_mode is only set to False during warmup phase. Thus when it becomes true during inference, all tactics fall back to the default one and thus cause perf regression.

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>

---------

Signed-off-by: Yukun He <23156053+hyukn@users.noreply.github.com>
2025-04-24 10:14:26 +08:00

584 lines
29 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/workspace.h"
#include "tensorrt_llm/kernels/cutlass_kernels/fp8_blockscale_gemm/fp8_blockscale_gemm.h"
#include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_gemm_kernels.h"
#include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_kernels.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/native/cuda/Resize.h>
#include <functional>
#define C10_THROW_ERROR_FORMATTED(ErrorType, ...) \
do \
{ \
std::ostringstream oss; \
oss << __VA_ARGS__; \
C10_THROW_ERROR(ErrorType, oss.str()); \
} while (0)
namespace torch_ext
{
namespace common = tensorrt_llm::common;
namespace kernels = tensorrt_llm::kernels;
using profiler_backend = kernels::GemmProfilerBackend;
class FusedMoeRunner : public torch::CustomClassHolder
{
public:
template <typename Type, bool NeedQuant = false>
std::unique_ptr<kernels::CutlassMoeFCRunnerInterface> switch_output_type(c10::ScalarType output_type)
{
switch (output_type)
{
case c10::ScalarType::Long: // INT64 == FP4
case c10::ScalarType::Float8_e4m3fn:
// TODO We need an atomic FP8 reduction for the finalize fusions
C10_THROW_ERROR_FORMATTED(NotImplementedError,
"Outputting " << torch::toString(output_type) << " directly is not currently supported");
// return std::make_unique<kernels::CutlassMoeFCRunner<Type, Type>>();
case c10::ScalarType::Half:
if constexpr (NeedQuant)
{
return std::make_unique<kernels::CutlassMoeFCRunner<Type, Type, half, half>>();
}
else
{
return std::make_unique<kernels::CutlassMoeFCRunner<Type, Type, half, Type>>();
}
#ifdef ENABLE_BF16
case c10::ScalarType::BFloat16:
if constexpr (NeedQuant)
{
return std::make_unique<kernels::CutlassMoeFCRunner<Type, Type, __nv_bfloat16, __nv_bfloat16>>();
}
else
{
return std::make_unique<kernels::CutlassMoeFCRunner<Type, Type, __nv_bfloat16, Type>>();
}
#endif
default:
C10_THROW_ERROR_FORMATTED(Error,
"Invalid output type " << torch::toString(output_type) << " specified for "
<< torch::toString(mActivationDtype));
}
};
FusedMoeRunner(c10::ScalarType activation_dtype, c10::ScalarType weight_dtype, c10::ScalarType output_dtype,
bool use_fp8_block_scaling)
{
mActivationDtype = activation_dtype;
mWeightDtype = weight_dtype;
mOutputDtype = output_dtype;
mUseFp8BlockScaling = use_fp8_block_scaling;
mInnerDimMultiplier = 1;
// keep consistent with cpp/tensorrt_llm/plugins/mixtureOfExperts/mixtureOfExpertsPlugin.cpp
if (mActivationDtype == c10::ScalarType::Half && mWeightDtype == c10::ScalarType::Half)
{
mKernelRunner = std::make_shared<kernels::CutlassMoeFCRunner<half, half>>();
}
#ifdef ENABLE_BF16
else if (mActivationDtype == c10::ScalarType::BFloat16 && mWeightDtype == c10::ScalarType::BFloat16)
{
mKernelRunner = std::make_shared<kernels::CutlassMoeFCRunner<__nv_bfloat16, __nv_bfloat16>>();
}
#ifdef ENABLE_FP8
else if (mActivationDtype == c10::ScalarType::BFloat16 && mWeightDtype == c10::ScalarType::Float8_e4m3fn)
{
mKernelRunner = std::make_unique<kernels::CutlassMoeFCRunner<__nv_bfloat16, __nv_fp8_e4m3>>();
}
#endif
#endif
#ifdef ENABLE_FP8
if (isFp8Quant())
{
mKernelRunner = switch_output_type<__nv_fp8_e4m3>(mOutputDtype);
}
#endif
#ifdef ENABLE_FP4
if (isNvfp4Quant())
{
mInnerDimMultiplier = 16;
switch (mActivationDtype)
{
case c10::ScalarType::Half:
#ifdef ENABLE_BF16
case c10::ScalarType::BFloat16:
#endif
mKernelRunner = switch_output_type<__nv_fp4_e2m1, true>(mOutputDtype);
break;
default: mKernelRunner = switch_output_type<__nv_fp4_e2m1, false>(mOutputDtype);
}
}
#endif
if (!mKernelRunner)
{
C10_THROW_ERROR_FORMATTED(Error,
"Could not construct fused moe op with the requested input combination Activation: "
<< torch::toString(mActivationDtype) << ", Weight: " << torch::toString(mWeightDtype)
<< ", Output: " << torch::toString(mOutputDtype));
}
mProfiler = std::make_shared<kernels::GemmProfilerBackend>();
mAllProfiles = mKernelRunner->getTactics();
}
~FusedMoeRunner()
{
if (mProfileWorkspace != nullptr)
{
auto const cu_free_status = cudaFree(mProfileWorkspace);
TORCH_CHECK(
cu_free_status == cudaSuccess, "Can't free profile workspace during FusedMoeRunner destruction.");
}
}
FusedMoeRunner(FusedMoeRunner const&) = delete;
void operator=(FusedMoeRunner const&) = delete;
torch::Tensor runMoe(torch::Tensor const& input, torch::Tensor const& token_selected_experts,
torch::optional<torch::Tensor> token_final_scales, torch::Tensor const& fc1_expert_weights,
torch::Tensor const& fc2_expert_weights, torch::optional<c10::ArrayRef<torch::Tensor>> quant_scales,
torch::optional<torch::Tensor> input_sf, int64_t const tp_size, int64_t const tp_rank, int64_t const ep_size,
int64_t const ep_rank, bool min_latency_mode, torch::optional<c10::ArrayRef<int64_t>> profile_ids)
{
std::lock_guard<std::mutex> lock(mMutex);
// Free the profile workspace to save memory
freeProfileWorkspace();
CHECK_INPUT(input, mActivationDtype)
CHECK_INPUT(token_selected_experts, at::ScalarType::Int)
if (token_final_scales)
{
CHECK_INPUT(token_final_scales.value(), at::ScalarType::Float)
}
CHECK_INPUT(fc1_expert_weights, mWeightDtype)
CHECK_INPUT(fc2_expert_weights, mWeightDtype)
TORCH_CHECK(input.dim() == 2, "input must be 2D.");
TORCH_CHECK(token_selected_experts.dim() == 2, "token_selected_experts must be 2D.");
TORCH_CHECK(fc1_expert_weights.dim() == 3, "fc1_expert_weights must be 3D.");
TORCH_CHECK(fc2_expert_weights.dim() == 3, "fc2_expert_weights must be 3D.");
TORCH_CHECK(input.sizes()[0] == token_selected_experts.sizes()[0],
"input and token_selected_experts must have the same num tokens.");
if (token_final_scales)
{
TORCH_CHECK(token_final_scales.value().dim() == 2, "token_selected_experts_probs must be 2D.");
TORCH_CHECK(input.sizes()[0] == token_final_scales.value().sizes()[0],
"input and token_selected_experts_probs must have the same num tokens.");
TORCH_CHECK(token_selected_experts.sizes()[1] == token_final_scales.value().sizes()[1],
"token_selected_experts and token_final_scales must have the same number of experts per token.");
}
TORCH_CHECK(fc1_expert_weights.sizes()[0] == fc2_expert_weights.sizes()[0],
"fc1_expert_weights and fc2_expert_weights must have the same number of experts.");
TORCH_CHECK(fc1_expert_weights.sizes()[1] == fc2_expert_weights.sizes()[2] * mInnerDimMultiplier * 2,
"fc1_expert_weights inter size must be 2 times fc2_expert_weights inter size.");
int experts_per_token = token_selected_experts.sizes()[1];
int64_t num_rows = input.sizes()[0];
int64_t hidden_size = fc2_expert_weights.sizes()[1];
int64_t inter_size = fc2_expert_weights.sizes()[2] * mInnerDimMultiplier;
int const num_experts_on_rank = fc2_expert_weights.sizes()[0];
auto const num_experts_total = static_cast<int>(num_experts_on_rank * ep_size);
auto parallelism_config = kernels::MOEParallelismConfig(tp_size, tp_rank, ep_size, ep_rank);
auto activation_type = tensorrt_llm::ActivationType::Swiglu;
setRunnerProfiles(profile_ids);
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
std::vector<int64_t> output_shape = {num_rows, hidden_size};
auto output = torch::empty(output_shape, input.options().dtype(mOutputDtype));
WorkspaceInfo workspace_info = getWorkspaceInfo(num_rows, hidden_size, inter_size, num_experts_total,
static_cast<int>(experts_per_token), activation_type, parallelism_config, min_latency_mode);
auto const quant_params = getQuantParams(num_experts_on_rank, hidden_size, inter_size, quant_scales);
kernels::MoeMinLatencyParams min_latency_params{};
// TODO: support lora in the future
kernels::LoraParams lora_params{};
mKernelRunner->runMoe(input.const_data_ptr(),
input_sf.has_value() ? input_sf.value().const_data_ptr() : nullptr,
reinterpret_cast<int const*>(token_selected_experts.const_data_ptr()),
token_final_scales.has_value() ? reinterpret_cast<float const*>(token_final_scales.value().const_data_ptr())
: nullptr,
fc1_expert_weights.const_data_ptr(), nullptr, activation_type, fc2_expert_weights.const_data_ptr(), nullptr,
quant_params, num_rows, hidden_size, inter_size, num_experts_total, static_cast<int>(experts_per_token),
static_cast<char*>(workspace_info.workspace), output.data_ptr(),
static_cast<int*>(workspace_info.src_to_dest_map), parallelism_config, false, lora_params,
mUseFp8BlockScaling, min_latency_mode, min_latency_params, stream);
return output;
}
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> runMoeMinLantency(torch::Tensor const& input,
torch::Tensor const& token_selected_experts, torch::optional<torch::Tensor> token_final_scales,
torch::Tensor const& fc1_expert_weights, torch::Tensor const& fc2_expert_weights,
torch::optional<c10::ArrayRef<torch::Tensor>> quant_scales, torch::optional<torch::Tensor> input_sf,
int64_t const tp_size, int64_t const tp_rank, int64_t const ep_size, int64_t const ep_rank,
bool min_latency_mode, torch::optional<c10::ArrayRef<int64_t>> profile_ids)
{
std::lock_guard<std::mutex> lock(mMutex);
// Free the profile workspace to save memory
freeProfileWorkspace();
CHECK_INPUT(input, mActivationDtype)
CHECK_INPUT(token_selected_experts, at::ScalarType::Int)
if (token_final_scales)
{
CHECK_INPUT(token_final_scales.value(), at::ScalarType::Float)
}
CHECK_INPUT(fc1_expert_weights, mWeightDtype)
CHECK_INPUT(fc2_expert_weights, mWeightDtype)
TORCH_CHECK(input.dim() == 2, "input must be 2D.");
TORCH_CHECK(token_selected_experts.dim() == 2, "token_selected_experts must be 2D.");
TORCH_CHECK(fc1_expert_weights.dim() == 3, "fc1_expert_weights must be 3D.");
TORCH_CHECK(fc2_expert_weights.dim() == 3, "fc2_expert_weights must be 3D.");
TORCH_CHECK(input.sizes()[0] == token_selected_experts.sizes()[0],
"input and token_selected_experts must have the same num tokens.");
if (token_final_scales)
{
TORCH_CHECK(token_final_scales.value().dim() == 2, "token_selected_experts_probs must be 2D.");
TORCH_CHECK(input.sizes()[0] == token_final_scales.value().sizes()[0],
"input and token_selected_experts_probs must have the same num tokens.");
TORCH_CHECK(token_selected_experts.sizes()[1] == token_final_scales.value().sizes()[1],
"token_selected_experts and token_final_scales must have the same number of experts per token.");
}
TORCH_CHECK(fc1_expert_weights.sizes()[0] == fc2_expert_weights.sizes()[0],
"fc1_expert_weights and fc2_expert_weights must have the same number of experts.");
TORCH_CHECK(fc1_expert_weights.sizes()[1] == fc2_expert_weights.sizes()[2] * mInnerDimMultiplier * 2,
"fc1_expert_weights inter size must be 2 times fc2_expert_weights inter size.");
int experts_per_token = token_selected_experts.sizes()[1];
int64_t num_rows = input.sizes()[0];
int64_t hidden_size = fc2_expert_weights.sizes()[1];
int64_t inter_size = fc2_expert_weights.sizes()[2] * mInnerDimMultiplier;
int const num_experts_on_rank = fc2_expert_weights.sizes()[0];
auto const num_experts_total = static_cast<int>(num_experts_on_rank * ep_size);
auto parallelism_config = kernels::MOEParallelismConfig(tp_size, tp_rank, ep_size, ep_rank);
auto activation_type = tensorrt_llm::ActivationType::Swiglu;
setRunnerProfiles(profile_ids);
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
std::vector<int64_t> output_shape = {num_rows * num_experts_on_rank, hidden_size};
auto output = torch::empty(output_shape, input.options().dtype(mOutputDtype));
auto num_active_experts_per_node = torch::empty({1}, input.options().dtype(at::ScalarType::Int));
auto experts_to_token_score
= torch::empty({num_experts_on_rank, num_rows}, input.options().dtype(at::ScalarType::Float));
auto active_expert_global_ids = torch::empty({num_experts_on_rank}, input.options().dtype(at::ScalarType::Int));
kernels::MoeMinLatencyParams min_latency_params{};
min_latency_params.num_active_experts_per_node = static_cast<int*>(num_active_experts_per_node.data_ptr());
min_latency_params.experts_to_token_score = static_cast<float*>(experts_to_token_score.data_ptr());
min_latency_params.active_expert_global_ids = static_cast<int*>(active_expert_global_ids.data_ptr());
WorkspaceInfo workspace_info = getWorkspaceInfo(num_rows, hidden_size, inter_size, num_experts_total,
static_cast<int>(experts_per_token), activation_type, parallelism_config, min_latency_mode);
auto const quant_params = getQuantParams(num_experts_on_rank, hidden_size, inter_size, quant_scales);
// TODO: support lora in the future
kernels::LoraParams lora_params{};
mKernelRunner->runMoe(input.const_data_ptr(),
input_sf.has_value() ? input_sf.value().const_data_ptr() : nullptr,
reinterpret_cast<int const*>(token_selected_experts.const_data_ptr()),
token_final_scales.has_value() ? reinterpret_cast<float const*>(token_final_scales.value().const_data_ptr())
: nullptr,
fc1_expert_weights.const_data_ptr(), nullptr, activation_type, fc2_expert_weights.const_data_ptr(), nullptr,
quant_params, num_rows, hidden_size, inter_size, num_experts_total, static_cast<int>(experts_per_token),
static_cast<char*>(workspace_info.workspace), output.data_ptr(),
static_cast<int*>(workspace_info.src_to_dest_map), parallelism_config, false, lora_params,
mUseFp8BlockScaling, min_latency_mode, min_latency_params, stream);
return std::make_tuple(output, num_active_experts_per_node, experts_to_token_score, active_expert_global_ids);
}
int64_t getTacticNum()
{
std::lock_guard<std::mutex> lock(mMutex);
return mAllProfiles.size();
}
void runGemmProfile(torch::Tensor const& input, torch::Tensor const& fc2_expert_weights, int64_t const top_k,
int64_t const tp_size, int64_t const tp_rank, int64_t const ep_size, int64_t const ep_rank,
bool const min_latency_mode, int64_t const gemm_idx, int64_t const profile_id, bool const do_preparation)
{
std::lock_guard<std::mutex> lock(mMutex);
// TODO: support profiling under fp8 block scaling in the future
if (mUseFp8BlockScaling)
{
return;
}
int64_t const num_rows = input.sizes()[0];
int64_t const hidden_size = fc2_expert_weights.sizes()[1];
int64_t const inter_size = fc2_expert_weights.sizes()[2] * mInnerDimMultiplier;
int const num_experts = static_cast<int>(fc2_expert_weights.sizes()[0] * ep_size);
// Get specific profile configs according to the profile_id.
// Fallback tactic is set to be 0
// TODO: use the best tactic id found offline for a better default inference perf
auto const& profile = profile_id == -1 ? mAllProfiles.front() : mAllProfiles[profile_id];
auto stream = at::cuda::getCurrentCUDAStream(input.get_device());
// Preparation phase, only enabled during autotuning warmup phase.
if (do_preparation)
{
// Set profiled gemm idx
mProfiler->mGemmToProfile
= (gemm_idx == 1) ? profiler_backend::GemmToProfile::GEMM_1 : profiler_backend::GemmToProfile::GEMM_2;
// mProfiler init
auto parallelism_config = kernels::MOEParallelismConfig(static_cast<int>(tp_size),
static_cast<int>(tp_rank), static_cast<int>(ep_size), static_cast<int>(ep_rank));
int const GROUP_SIZE = -1;
bool const USE_BIAS = false;
bool const USE_LORA = false;
mProfiler->init(*mKernelRunner.get(), mProfiler->mGemmToProfile,
tensorrt_llm::runtime::TorchUtils::dataType(mActivationDtype),
tensorrt_llm::runtime::TorchUtils::dataType(mWeightDtype),
tensorrt_llm::runtime::TorchUtils::dataType(mOutputDtype), num_experts, static_cast<int>(top_k),
hidden_size, inter_size, GROUP_SIZE, tensorrt_llm::ActivationType::Swiglu, USE_BIAS, USE_LORA,
min_latency_mode, parallelism_config);
freeProfileWorkspace();
size_t profile_workspace_size = mProfiler->getWorkspaceSize(num_rows);
auto const cu_malloc_status = cudaMalloc(&mProfileWorkspace, profile_workspace_size);
TORCH_CHECK(cu_malloc_status == cudaSuccess, "Can't allocate profile workspace for MoE GEMM profile.");
mProfiler->prepare(num_rows, mProfileWorkspace, stream);
}
// Profile specific tactic. Assuming at least one preparation phase has been executed already.
mProfiler->runProfiler(num_rows, profile, mProfileWorkspace, stream);
}
private:
struct WorkspaceInfo
{
void* workspace{};
void* src_to_dest_map{};
};
std::mutex mMutex;
std::shared_ptr<kernels::CutlassMoeFCRunnerInterface> mKernelRunner;
std::shared_ptr<kernels::GemmProfilerBackend> mProfiler;
c10::ScalarType mActivationDtype;
c10::ScalarType mWeightDtype;
c10::ScalarType mOutputDtype;
// number of elements packed into the inner dimension of a matrix
// e.g. 16 nvfp4 elements are packed into a single int64 element
int64_t mInnerDimMultiplier;
char* mProfileWorkspace = nullptr;
bool mUseFp8BlockScaling = false;
using Profile = tensorrt_llm::cutlass_extensions::CutlassGemmConfig;
std::vector<Profile> mAllProfiles;
void freeProfileWorkspace()
{
if (mProfileWorkspace != nullptr)
{
auto const cu_free_status = cudaFree(mProfileWorkspace);
TORCH_CHECK(cu_free_status == cudaSuccess,
"Can't free profile workspace for MoE GEMM profile during memory reallocation.");
mProfileWorkspace = nullptr;
}
}
void setRunnerProfiles(torch::optional<c10::ArrayRef<int64_t>> profile_ids)
{
if (mUseFp8BlockScaling)
{
auto config = tensorrt_llm::cutlass_extensions::CutlassGemmConfig(
tensorrt_llm::cutlass_extensions::CutlassTileConfigSM90::CtaShape128x16x128B,
tensorrt_llm::cutlass_extensions::MainloopScheduleType::AUTO,
tensorrt_llm::cutlass_extensions::EpilogueScheduleType::AUTO,
tensorrt_llm::cutlass_extensions::ClusterShape::ClusterShape_1x1x1);
mKernelRunner->setTactic(config, config);
return;
}
auto best_gemm1_profile = mAllProfiles.front();
auto best_gemm2_profile = mAllProfiles.front();
if (profile_ids.has_value())
{
TORCH_CHECK(profile_ids.value().size() == 2, "Expecting 2 profile ids");
best_gemm1_profile
= profile_ids.value()[0] == -1 ? best_gemm1_profile : mAllProfiles.at(profile_ids.value()[0]);
best_gemm2_profile
= profile_ids.value()[1] == -1 ? best_gemm2_profile : mAllProfiles.at(profile_ids.value()[1]);
}
mKernelRunner->setTactic(best_gemm1_profile, best_gemm2_profile);
}
WorkspaceInfo getWorkspaceInfo(int64_t const num_rows, int64_t const hidden_size, int64_t const inter_size,
int num_experts, int experts_per_token, tensorrt_llm::ActivationType activation_type,
kernels::MOEParallelismConfig const& parallelismConfig, bool min_latency_mode)
{
size_t moe_workspace_size
= mKernelRunner->getWorkspaceSize(num_rows, hidden_size, inter_size, num_experts, experts_per_token,
activation_type, parallelismConfig, /* use_lora */ false, mUseFp8BlockScaling, min_latency_mode,
/* hasExpertPrequantScales */ false);
size_t src_to_dest_map_size = experts_per_token * num_rows * sizeof(int);
std::vector<size_t> workspaces{moe_workspace_size, src_to_dest_map_size};
size_t total_workspace_size = common::calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
auto workspace = torch::empty({static_cast<long>(total_workspace_size)},
torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false));
WorkspaceInfo info{};
info.workspace = workspace.data_ptr();
info.src_to_dest_map = common::nextWorkspacePtr(static_cast<int8_t*>(workspace.data_ptr()), moe_workspace_size);
return info;
}
kernels::QuantParams getQuantParams(int64_t const num_experts_on_rank, int64_t const hidden_size,
int64_t const inter_size, torch::optional<c10::ArrayRef<torch::Tensor>> const& quant_scales) const
{
if (isFp8Quant())
{
TORCH_CHECK(quant_scales.has_value(), "Expecting quant scales for fp8 quantization");
TORCH_CHECK(quant_scales.value().size() == 4, "Expecting 4 quant scales for fp8 quantization");
auto const fc1_dequant = quant_scales.value()[0];
auto const fc2_quant = quant_scales.value()[1];
auto const fc2_dequant = quant_scales.value()[2];
auto const fc1_input_dequant = quant_scales.value()[3];
CHECK_INPUT(fc1_dequant, c10::ScalarType::Float);
CHECK_INPUT(fc2_quant, c10::ScalarType::Float);
CHECK_INPUT(fc2_dequant, c10::ScalarType::Float);
CHECK_INPUT(fc1_input_dequant, c10::ScalarType::Float);
TORCH_CHECK(fc1_dequant.dim() == 1, "fc1 dequant must be 1D");
TORCH_CHECK(fc2_quant.dim() == 0, "fc2 quant must be a scalar tensor");
TORCH_CHECK(fc2_dequant.dim() == 1, "fc2 quant must be 1D");
TORCH_CHECK(fc1_input_dequant.dim() == 0, "fc1 input dequant must be a scalar tensor");
TORCH_CHECK(
fc1_dequant.sizes()[0] == num_experts_on_rank, "fc1 dequant size must be (num_experts_on_rank,)");
TORCH_CHECK(
fc2_dequant.sizes()[0] == num_experts_on_rank, "fc2 dequant size must be (num_experts_on_rank,)");
return kernels::QuantParams::FP8(static_cast<float const*>(fc1_dequant.data_ptr()),
static_cast<float const*>(fc2_quant.data_ptr()), static_cast<float const*>(fc2_dequant.data_ptr()),
/* fp8 output quant scale */ nullptr, static_cast<float const*>(fc1_input_dequant.data_ptr()));
}
else if (isNvfp4Quant())
{
TORCH_CHECK(quant_scales.has_value(), "Expecting quant scales for nvfp4 quantization");
TORCH_CHECK(quant_scales.value().size() == 6, "Expecting 6 quant scales for nvfp4 quantization");
auto const fc1_act_global = quant_scales.value()[0];
auto const fc1_weight_block = quant_scales.value()[1];
auto const fc1_global = quant_scales.value()[2];
auto const fc2_act_global = quant_scales.value()[3];
auto const fc2_weight_block = quant_scales.value()[4];
auto const fc2_global = quant_scales.value()[5];
// The input for scale fc1_weight_block / fc2_weight_block is packed into INT32
constexpr int FP8_PER_INT32 = 4;
CHECK_INPUT(fc1_act_global, c10::ScalarType::Float);
CHECK_INPUT(fc1_weight_block, c10::ScalarType::Int);
CHECK_INPUT(fc1_global, c10::ScalarType::Float);
CHECK_INPUT(fc2_act_global, c10::ScalarType::Float);
CHECK_INPUT(fc2_weight_block, c10::ScalarType::Int);
CHECK_INPUT(fc2_global, c10::ScalarType::Float);
TORCH_CHECK(fc1_act_global.dim() == 0, "fc1 act global must be a scalar tensor");
TORCH_CHECK(fc1_weight_block.dim() == 3, "fc1 weight block must be #D");
TORCH_CHECK(fc1_global.dim() == 1, "fc1 global must be 1D");
TORCH_CHECK(fc2_act_global.dim() == 0, "fc2 act global must be a scalar tensor");
TORCH_CHECK(fc2_weight_block.dim() == 3, "fc2 weight block must be 3D");
TORCH_CHECK(fc2_global.dim() == 1, "fc2 global must be 1D");
TORCH_CHECK(fc1_weight_block.sizes()[0] == num_experts_on_rank
&& fc1_weight_block.sizes()[1] == inter_size * 2
&& fc1_weight_block.sizes()[2] * FP8_PER_INT32
* tensorrt_llm::TmaWarpSpecializedGroupedGemmInput::BlockScaleVectorSize
== hidden_size,
"fc1 weight block size must be (num_experts_on_rank, inter_size * 2, hidden_size // 4 // "
"block_scale_vector_size)");
TORCH_CHECK(fc1_global.sizes()[0] == num_experts_on_rank, "fc1 global size must be (num_experts_on_rank,)");
TORCH_CHECK(fc2_weight_block.sizes()[0] == num_experts_on_rank && fc2_weight_block.sizes()[1] == hidden_size
&& fc2_weight_block.sizes()[2] * FP8_PER_INT32
* tensorrt_llm::TmaWarpSpecializedGroupedGemmInput::BlockScaleVectorSize
== inter_size,
"fc2 weight block size must be (num_experts_on_rank, hidden_size, inter_size // 4 // "
"block_scale_vector_size)");
TORCH_CHECK(fc2_global.sizes()[0] == num_experts_on_rank, "fc2 global size must be (num_experts_on_rank,)");
return kernels::QuantParams::FP4(static_cast<float const*>(fc1_act_global.data_ptr()),
static_cast<tensorrt_llm::TmaWarpSpecializedGroupedGemmInput::ElementSF*>(fc1_weight_block.data_ptr()),
static_cast<float const*>(fc1_global.data_ptr()), static_cast<float const*>(fc2_act_global.data_ptr()),
static_cast<tensorrt_llm::TmaWarpSpecializedGroupedGemmInput::ElementSF*>(fc2_weight_block.data_ptr()),
static_cast<float const*>(fc2_global.data_ptr()));
}
else if (mUseFp8BlockScaling)
{
auto& fc1_scales = quant_scales.value()[0];
auto& fc2_scales = quant_scales.value()[1];
return kernels::QuantParams::FP8BlockScaling(
static_cast<float const*>(fc1_scales.data_ptr()), static_cast<float const*>(fc2_scales.data_ptr()));
}
else
{
return kernels::QuantParams{};
}
}
bool isFp8Quant() const
{
return !mUseFp8BlockScaling && mActivationDtype == c10::ScalarType::Float8_e4m3fn
&& mWeightDtype == c10::ScalarType::Float8_e4m3fn;
}
bool isNvfp4Quant() const
{
return mWeightDtype == c10::ScalarType::Long;
}
};
} // namespace torch_ext
TORCH_LIBRARY(trtllm, m)
{
m.class_<torch_ext::FusedMoeRunner>("FusedMoeRunner")
.def(torch::init<c10::ScalarType, c10::ScalarType, c10::ScalarType, bool>())
.def("run_gemm_profile", &torch_ext::FusedMoeRunner::runGemmProfile)
.def("get_tactic_num", &torch_ext::FusedMoeRunner::getTacticNum)
.def("run_moe", &torch_ext::FusedMoeRunner::runMoe)
.def("run_moe_min_latency", &torch_ext::FusedMoeRunner::runMoeMinLantency);
}