mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
160 lines
4.5 KiB
C++
160 lines
4.5 KiB
C++
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <NvInferRuntime.h>
|
|
#include <cuda_fp16.h>
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/quantization.h"
|
|
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/cubinObjRegistry.h"
|
|
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/decoderXQAImplJIT.h"
|
|
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplPrecompiled.h"
|
|
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/xqaParams.h"
|
|
#include "tensorrt_llm/kernels/gptKernels.h"
|
|
#include "tensorrt_llm/kernels/kvCacheUtils.h"
|
|
#include "tensorrt_llm/kernels/multiHeadAttentionCommon.h"
|
|
|
|
using namespace tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
template <typename T, typename KVCacheBuffer>
|
|
struct XQADispatchHelper
|
|
{
|
|
static constexpr bool CanSupport = false;
|
|
};
|
|
|
|
template <>
|
|
struct XQADispatchHelper<__half, KVLinearBuffer>
|
|
{
|
|
static constexpr bool CanSupport = true;
|
|
};
|
|
|
|
template <>
|
|
struct XQADispatchHelper<__half, KVBlockArray>
|
|
{
|
|
static constexpr bool CanSupport = true;
|
|
};
|
|
|
|
#ifdef ENABLE_BF16
|
|
template <>
|
|
struct XQADispatchHelper<__nv_bfloat16, KVLinearBuffer>
|
|
{
|
|
static constexpr bool CanSupport = true;
|
|
};
|
|
|
|
template <>
|
|
struct XQADispatchHelper<__nv_bfloat16, KVBlockArray>
|
|
{
|
|
static constexpr bool CanSupport = true;
|
|
};
|
|
#endif
|
|
|
|
class DecoderXQARunner
|
|
{
|
|
public:
|
|
DecoderXQARunner(
|
|
const XQADataType data_type, int num_heads, int num_kv_heads, int head_size, bool multi_block_mode);
|
|
~DecoderXQARunner();
|
|
|
|
/**
|
|
* \param[in] xqaParams the xqaParams to be tested against.
|
|
* \param[in] forConfigurePlugin indicates whether this method is called in configurePlugin, or in
|
|
* enqueueGeneration.
|
|
*/
|
|
bool shouldUse(XQAParams const& xqaParams, bool forConfigurePlugin);
|
|
|
|
void prepare(XQAParams const& xqa_params)
|
|
{
|
|
this->prepareForRun(xqa_params);
|
|
}
|
|
|
|
template <typename KVCacheBuffer>
|
|
void dispatch(XQAParams const& xqa_params, KVCacheBuffer const& kv_cache_buffer, cudaStream_t const& stream)
|
|
{
|
|
sync_check_cuda_error();
|
|
this->run(xqa_params, kv_cache_buffer, stream);
|
|
}
|
|
|
|
class Resource;
|
|
static Resource* getResourceGlobal();
|
|
|
|
private:
|
|
void prepareForRun(XQAParams const& xqa_params);
|
|
|
|
template <typename KVCacheBuffer>
|
|
void run(XQAParams const& xqa_params, KVCacheBuffer const& kv_cache_buffer, cudaStream_t const& stream);
|
|
|
|
static constexpr int kMaxBeamWidth = 4;
|
|
|
|
XQADataType mDataType;
|
|
int mNumHeads;
|
|
int mNumKVHeads;
|
|
int mHeadSize;
|
|
bool mMultiBlockMode;
|
|
int mMultiProcessorCount;
|
|
|
|
std::unique_ptr<DecoderXQAImpl> mJITImpl, mPrecompiledImpl;
|
|
DecoderXQAImpl* getImplFromXQAParams(XQAParams const& params, bool for_configure_plugin);
|
|
|
|
friend DecoderXQAImplPrecompiled;
|
|
friend DecoderXQAImplJIT;
|
|
};
|
|
|
|
class DecoderXQARunner::Resource
|
|
{
|
|
public:
|
|
Resource();
|
|
Resource(Resource const& other);
|
|
Resource& operator=(Resource const& other);
|
|
Resource(Resource&& other) = default;
|
|
Resource& operator=(Resource&& other) = default;
|
|
// Construct from a serialized buffer.
|
|
Resource(void const* buffer, size_t buffer_size);
|
|
~Resource() = default;
|
|
|
|
// When initialize is true, initialize cubins.
|
|
void merge(Resource const& other, bool initialize)
|
|
{
|
|
getCubinObjRegistry()->merge(*other.getCubinObjRegistry(), initialize);
|
|
}
|
|
|
|
jit::CubinObjRegistry* getCubinObjRegistry()
|
|
{
|
|
return mCubinObjRegistry.get();
|
|
}
|
|
|
|
jit::CubinObjRegistry const* getCubinObjRegistry() const
|
|
{
|
|
return mCubinObjRegistry.get();
|
|
}
|
|
|
|
size_t getSerializationSize() const noexcept;
|
|
void serialize(void* buffer, size_t buffer_size) const noexcept;
|
|
|
|
private:
|
|
std::unique_ptr<jit::CubinObjRegistry> mCubinObjRegistry;
|
|
};
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|