TensorRT-LLMs/cpp/tensorrt_llm/thop/fp4Quantize.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

112 lines
4.0 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/thop/thUtils.h"
#include <ATen/cuda/EmptyTensor.h>
#include <cuda_fp16.h>
#include <cstdint>
namespace torch_ext
{
// self: [M, K], fp16/bf16/fp8_quantized
// globalScale: [1] float, = (448 * 6) / self.abs().max()
// nvfp4: sfVecSize = 16, sfUseUE8M0 = false
// mxfp4: sfVecSize = 32 (not supported yet), sfUseUE8M0 = true
// alignment: sfVecSize
// returns self_fp4, self_block_scale_factors
// self_fp4: [M, K / 2], FLOAT4_E2M1X2
// self_block_scale_factors: ceil(M / 128) * 128 * ceil(K / sfVecSize / 4) * 4, SF_DTYPE (UE4M3 or UE8M0)
std::tuple<at::Tensor, at::Tensor> fp4_quantize(
at::Tensor const& self, at::Tensor const& globalScale, int64_t sfVecSize, bool sfUseUE8M0)
{
CHECK_TH_CUDA(self);
CHECK_CONTIGUOUS(self);
CHECK_INPUT(globalScale, torch::kFloat32);
TORCH_CHECK(sfVecSize == 16, "sfVecSize can only be 16");
auto const& inputShape = self.sizes();
auto const& rank = inputShape.size();
TORCH_CHECK(rank >= 2, "Input should be >=2D tensor.");
int64_t m = 1;
for (auto i = 0; i < rank - 1; i++)
{
m *= inputShape[i];
}
auto const k = inputShape[rank - 1];
TORCH_CHECK(k % sfVecSize == 0);
std::vector<int64_t> outputShape(inputShape.begin(), inputShape.end());
outputShape[rank - 1] = k / 2;
at::Tensor valueE2M1 = at::detail::empty_cuda(outputShape, FLOAT4_E2M1X2, self.device(), /* stride */ std::nullopt);
at::Tensor scaleFP8SF = at::detail::empty_cuda({tensorrt_llm::computeSFSize(m, k / sfVecSize)}, SF_DTYPE,
self.device(), /* stride */ std::nullopt); // 1D tensor
const thread_local int mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount();
#define LAUNCH_FP4_QUANTIZE_KERNEL(T) \
tensorrt_llm::kernels::invokeFP4Quantization(m, k, reinterpret_cast<T*>(self.data_ptr()), \
globalScale.data_ptr<float>(), reinterpret_cast<int64_t*>(valueE2M1.data_ptr()), \
reinterpret_cast<int32_t*>(scaleFP8SF.data_ptr()), sfUseUE8M0, mMultiProcessorCount, \
at::cuda::getCurrentCUDAStream(self.get_device()));
if (self.scalar_type() == at::ScalarType::Half)
{
LAUNCH_FP4_QUANTIZE_KERNEL(half)
}
else if (self.scalar_type() == at::ScalarType::BFloat16)
{
#ifdef ENABLE_BF16
LAUNCH_FP4_QUANTIZE_KERNEL(__nv_bfloat16)
#else
C10_THROW_ERROR(NotImplementedError, "BFloat16 must be enabled to quantize an bf16 tensor to fp4.");
#endif
}
else if (self.scalar_type() == at::ScalarType::Float8_e4m3fn)
{
#ifdef ENABLE_FP8
LAUNCH_FP4_QUANTIZE_KERNEL(__nv_fp8_e4m3)
#else
C10_THROW_ERROR(NotImplementedError, "FP8 must be enabled to quantize an fp8 tensor to fp4.");
#endif
}
else
{
C10_THROW_ERROR(NotImplementedError, "fp4_quantize only supports input tensor with dtypes fp16/bf16/e4m3.");
}
#undef LAUNCH_FP4_QUANTIZE_KERNEL
return {valueE2M1, scaleFP8SF};
}
} // namespace torch_ext
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def("fp4_quantize(Tensor input, Tensor globalScale, int sfVecSize, bool sfUseUE8M0=False) -> (Tensor, Tensor)");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("fp4_quantize", &torch_ext::fp4_quantize);
}