TensorRT-LLMs/cpp/tensorrt_llm/thop/noAuxTcOp.cpp
2025-02-25 21:21:49 +08:00

99 lines
3.8 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/opUtils.h"
#include "tensorrt_llm/runtime/torchUtils.h"
#include "tensorrt_llm/kernels/noAuxTcKernels.h"
// #include <NvInferRuntime.h>
// #include <c10/cuda/CUDAStream.h>
// #include <cassert>
// #include <set>
// #include <string>
// #include <torch/extension.h>
// #include <vector>
namespace th = torch;
namespace tl = tensorrt_llm;
namespace tk = tensorrt_llm::kernels;
namespace torch_ext
{
th::Tensor noaux_tc_op(th::Tensor const& scores, th::Tensor const& scores_with_bias, int64_t n_group,
int64_t topk_group, int64_t topk, double routed_scaling_factor)
{
auto data_type = scores_with_bias.scalar_type();
auto input_size = scores_with_bias.sizes();
int64_t num_tokens = input_size[0];
int64_t num_experts = input_size[1];
TORCH_CHECK(input_size.size() == 2, "scores_with_bias must be a 2D Tensor");
TORCH_CHECK(num_experts % n_group == 0, "num_experts should be divisible by n_group");
TORCH_CHECK(
n_group <= 32, "n_group should be smaller than or equal to 32 for now"); //@todo: remove this restriction later
TORCH_CHECK(
topk <= 32, "topk should be smaller than or equal to 32 for now"); //@todo: remove this restriction later
th::Tensor group_scores = th::empty({num_tokens, n_group}, th::dtype(data_type).device(torch::kCUDA));
auto stream = at::cuda::getCurrentCUDAStream(scores_with_bias.get_device());
switch (data_type)
{
case torch::kFloat16:
// Handle Float16
tk::invokeNoAuxTc<half>(reinterpret_cast<half*>(scores.mutable_data_ptr()),
reinterpret_cast<half*>(group_scores.mutable_data_ptr()),
reinterpret_cast<half*>(scores_with_bias.data_ptr()), num_tokens, num_experts, n_group, topk_group, topk,
routed_scaling_factor, stream);
break;
case torch::kFloat32:
// Handle Float32
tk::invokeNoAuxTc<float>(reinterpret_cast<float*>(scores.mutable_data_ptr()),
reinterpret_cast<float*>(group_scores.mutable_data_ptr()),
reinterpret_cast<float*>(scores_with_bias.data_ptr()), num_tokens, num_experts, n_group, topk_group, topk,
routed_scaling_factor, stream);
break;
case torch::kBFloat16:
// Handle BFloat16
tk::invokeNoAuxTc<__nv_bfloat16>(reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(group_scores.mutable_data_ptr()),
reinterpret_cast<__nv_bfloat16*>(scores_with_bias.data_ptr()), num_tokens, num_experts, n_group, topk_group,
topk, routed_scaling_factor, stream);
break;
default:
// Handle other data types
throw std::invalid_argument("Invalid dtype, only supports float16, float32, and bfloat16");
break;
}
return scores;
}
} // end namespace torch_ext
TORCH_LIBRARY_FRAGMENT(trtllm, m)
{
m.def(
"noaux_tc_op(Tensor scores, Tensor scores_with_bias, int n_group, int topk_group, int topk, float "
"routed_scaling_factor) -> Tensor");
}
TORCH_LIBRARY_IMPL(trtllm, CUDA, m)
{
m.impl("noaux_tc_op", &torch_ext::noaux_tc_op);
}