TensorRT-LLMs/examples/auto_deploy/build_and_run_ad.py
2025-02-25 21:21:49 +08:00

111 lines
3.9 KiB
Python

"""Main entrypoint to build, test, and prompt AutoDeploy inference models."""
import argparse
import json
from typing import List, Optional, Union
import torch
from simple_config import SimpleConfig
from tensorrt_llm._torch.auto_deploy.models import ModelFactoryRegistry
from tensorrt_llm._torch.auto_deploy.shim import AutoDeployConfig, DemoLLM
from tensorrt_llm._torch.auto_deploy.utils.benchmark import benchmark
from tensorrt_llm._torch.auto_deploy.utils.logger import ad_logger
from tensorrt_llm.builder import BuildConfig
from tensorrt_llm.llmapi.llm import LLM, RequestOutput
from tensorrt_llm.sampling_params import SamplingParams
# Global torch config, set the torch compile cache to fix up to llama 405B
torch._dynamo.config.cache_size_limit = 20
def get_config_and_check_args() -> SimpleConfig:
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=json.loads)
parser.add_argument("-m", "--model-kwargs", type=json.loads)
args = parser.parse_args()
configs_from_args = args.config or {}
configs_from_args["model_kwargs"] = getattr(args, "model_kwargs") or {}
config = SimpleConfig(**configs_from_args)
ad_logger.info(f"Simple Config: {config}")
return config
def build_llm_from_config(config: SimpleConfig) -> LLM:
"""Builds a LLM object from our config."""
# set up builder config
build_config = BuildConfig(max_seq_len=config.max_seq_len, max_batch_size=config.max_batch_size)
build_config.plugin_config.tokens_per_block = config.page_size
# setup AD config
ad_config = AutoDeployConfig(
use_cuda_graph=config.compile_backend == "torch-opt",
torch_compile_enabled=config.compile_backend == "torch-opt",
model_kwargs=config.model_kwargs,
attn_backend=config.attn_backend,
skip_loading_weights=config.skip_loading_weights,
)
ad_logger.info(f"AutoDeploy Config: {ad_config}")
# TODO (lliebenwein): let's see if prefetching can't be done through the LLM api?
# I believe the "classic workflow" invoked via the LLM api can do that.
# put everything into the HF model Factory and try pre-fetching the checkpoint
factory = ModelFactoryRegistry.get("hf")(model=config.model, model_kwargs=config.model_kwargs)
# construct llm high-level interface object
llm_lookup = {
"demollm": DemoLLM,
"trtllm": LLM,
}
llm = llm_lookup[config.runtime](
model=factory.ckpt_path,
backend="autodeploy",
build_config=build_config,
pytorch_backend_config=ad_config,
tensor_parallel_size=config.world_size,
)
return llm
def print_outputs(outs: Union[RequestOutput, List[RequestOutput]]):
if isinstance(outs, RequestOutput):
outs = [outs]
for i, out in enumerate(outs):
ad_logger.info(f"[PROMPT {i}] {out.prompt}: {out.outputs[0].text}")
@torch.inference_mode()
def main(config: Optional[SimpleConfig] = None):
if config is None:
config = get_config_and_check_args()
llm = build_llm_from_config(config)
# prompt the model and print its output
outs = llm.generate(
config.prompt,
sampling_params=SamplingParams(
max_tokens=config.max_tokens,
top_k=config.top_k,
temperature=config.temperature,
),
)
print_outputs(outs)
# run a benchmark for the model with batch_size == config.benchmark_bs
if config.benchmark:
token_ids = torch.randint(0, 100, (config.benchmark_bs, config.benchmark_isl)).tolist()
sampling_params = SamplingParams(max_tokens=config.benchmark_osl, top_k=None)
keys = ["compile_backend", "attn_backend"]
benchmark(
lambda: llm.generate(token_ids, sampling_params=sampling_params, use_tqdm=False),
config.benchmark_num,
"Benchmark with " + ", ".join(f"{k}={getattr(config, k)}" for k in keys),
results_path=config.benchmark_results_path,
)
if __name__ == "__main__":
main()