TensorRT-LLMs/cpp/tensorrt_llm/kernels/moeUtilOp.cu
Zhihan Jiang ab6fb9f05d
Cherry-pick moe sort (and all its dependencies) (#6127)
Signed-off-by: Mindy Li <11663212+limin2021@users.noreply.github.com>
Signed-off-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
Co-authored-by: Li Min <11663212+limin2021@users.noreply.github.com>
Co-authored-by: Daniel Stokes <40156487+djns99@users.noreply.github.com>
Co-authored-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
2025-07-27 23:13:18 -07:00

950 lines
44 KiB
Plaintext

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cutlass_kernels/include/moe_kernels.h"
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/kernels/cutlass_kernels/cutlass_type_conversion.h"
#include "tensorrt_llm/kernels/moeUtilOp.h"
#include "tensorrt_llm/kernels/quantization.cuh"
#include <cuda_fp16.h>
#include <float.h>
#include <climits> // For INT_MAX
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <cub/cub.cuh>
#include <cuda/std/limits> // For numeric_limits
#include <math.h>
#include <cutlass/array.h>
#include <cutlass/half.h>
#include <cutlass/numeric_types.h>
#ifndef CUDART_VERSION
#error CUDART_VERSION Undefined!
#elif (CUDART_VERSION >= 11050)
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#include <cub/util_type.cuh>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
#else
#include "3rdparty/cub/cub.cuh"
#include "3rdparty/cub/device/device_radix_sort.cuh"
#include "3rdparty/cub/util_type.cuh"
#endif
namespace cg = cooperative_groups;
using namespace tensorrt_llm::common;
namespace tensorrt_llm::kernels
{
// ========================== CUB Sorting things ====================================
CubKeyValueSorter::CubKeyValueSorter()
: num_experts_(0)
, num_bits_(sizeof(int) * 8)
{
}
int CubKeyValueSorter::expertsToBits(int num_experts)
{
// Max value we represent is V = num_experts + (num_experts - 1) = 2 * num_experts - 1
// The maximum number of bits is therefore floor(log2(V)) + 1
return static_cast<int>(log2(2 * num_experts - 1)) + 1;
}
CubKeyValueSorter::CubKeyValueSorter(int const num_experts)
: num_experts_(num_experts)
, num_bits_(expertsToBits(num_experts))
{
}
void CubKeyValueSorter::updateNumExperts(int const num_experts)
{
num_experts_ = num_experts;
num_bits_ = expertsToBits(num_experts);
}
size_t CubKeyValueSorter::getWorkspaceSize(size_t const num_key_value_pairs, int const num_experts)
{
int num_bits = expertsToBits(num_experts);
size_t required_storage = 0;
int* null_int = nullptr;
cub::DeviceRadixSort::SortPairs(
nullptr, required_storage, null_int, null_int, null_int, null_int, num_key_value_pairs, 0, num_bits);
// TODO: fix DeviceRadixSort
// when num_key_value_pairs, num_experts, num_bits, required_storage = 64, 4, 3, 0
// The required_storage seems to vary between 0 and 1 for the same inputs
if (required_storage == 0)
{
required_storage = 1;
}
return required_storage;
}
void CubKeyValueSorter::run(void* workspace, size_t const workspace_size, int const* keys_in, int* keys_out,
int const* values_in, int* values_out, size_t const num_key_value_pairs, cudaStream_t stream)
{
size_t expected_ws_size = getWorkspaceSize(num_key_value_pairs, num_experts_);
size_t actual_ws_size = workspace_size;
TLLM_CHECK_WITH_INFO(expected_ws_size <= workspace_size,
"[CubKeyValueSorter::run] The allocated workspace is too small to run this problem.");
cub::DeviceRadixSort::SortPairs(
workspace, actual_ws_size, keys_in, keys_out, values_in, values_out, num_key_value_pairs, 0, num_bits_, stream);
}
// TODO: These kernel implementations are duplicated in moe_kernels.cu. They will be refactored later (tracked by
// https://jirasw.nvidia.com/browse/TRTLLM-708)
template <int BLOCK_SIZE, int EXPERTS_PER_TOKEN, int LOG2_NUM_EXPERTS>
__global__ void fusedBuildExpertMapsSortFirstTokenKernel(int const* const token_selected_experts,
int* const unpermuted_token_selected_experts, int* const permuted_source_token_ids,
int64_t* const expert_first_token_offset, int64_t const num_tokens, int const experts_per_token,
int const start_expert, int const end_expert, int const num_experts_per_node)
{
// Only using block wise collective so we can only have one block
assert(gridDim.x == 1);
assert(start_expert <= end_expert);
assert(num_experts_per_node == (end_expert - start_expert));
assert(end_expert <= num_experts_per_node);
assert(num_experts_per_node <= (1 << LOG2_NUM_EXPERTS));
int const token = blockIdx.x * BLOCK_SIZE + threadIdx.x;
bool is_valid_token = token < num_tokens;
// This is the masked expert id for this token
int local_token_selected_experts[EXPERTS_PER_TOKEN];
// This is the final permuted rank of this token (ranked by selected expert)
int local_token_permuted_indices[EXPERTS_PER_TOKEN];
// Wait PDL before reading token_selected_experts
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
// build expert map
// we need to populate expert ids for all threads, even if there are
// fewer tokens
#pragma unroll
for (int i = 0; i < EXPERTS_PER_TOKEN; i++)
{
int const expert
= is_valid_token ? token_selected_experts[token * EXPERTS_PER_TOKEN + i] : num_experts_per_node;
// If the token is not valid, set the expert id to num_experts_per_node + 1
// If expert is not in the current node, set it to num_experts_per_node
// If expert is in the current node, subtract start_expert to shift the range to [0, num_experts_per_node)
bool is_valid_expert = expert >= start_expert && expert < end_expert;
local_token_selected_experts[i] = !is_valid_token ? num_experts_per_node + 1
: is_valid_expert ? (expert - start_expert)
: num_experts_per_node;
}
// TODO: decompose cub's sort to expose the bucket starts, and just return
// that to elide the binary search
// sort the expert map
using BlockRadixRank = cub::BlockRadixRank<BLOCK_SIZE, LOG2_NUM_EXPERTS, false>;
extern __shared__ unsigned char temp_storage[];
auto& sort_temp = *reinterpret_cast<typename BlockRadixRank::TempStorage*>(temp_storage);
// Sanity check that the number of bins do correspond to the number of experts
static_assert(BlockRadixRank::BINS_TRACKED_PER_THREAD * BLOCK_SIZE >= (1 << LOG2_NUM_EXPERTS));
assert(BlockRadixRank::BINS_TRACKED_PER_THREAD * BLOCK_SIZE >= num_experts_per_node);
int local_expert_first_token_offset[BlockRadixRank::BINS_TRACKED_PER_THREAD];
cub::BFEDigitExtractor<int> extractor(0, LOG2_NUM_EXPERTS);
BlockRadixRank(sort_temp).RankKeys(
local_token_selected_experts, local_token_permuted_indices, extractor, local_expert_first_token_offset);
// We are done with compute, launch the dependent kernels while the stores are in flight
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
// write to shared memory and global memory
if (is_valid_token)
{
#pragma unroll
for (int i = 0; i < EXPERTS_PER_TOKEN; i++)
{
unpermuted_token_selected_experts[token * EXPERTS_PER_TOKEN + i] = local_token_selected_experts[i];
permuted_source_token_ids[local_token_permuted_indices[i]] = i * num_tokens + token;
}
}
#pragma unroll
for (int expert_id = 0; expert_id < BlockRadixRank::BINS_TRACKED_PER_THREAD; expert_id++)
{
int out_expert_id = expert_id + token * BlockRadixRank::BINS_TRACKED_PER_THREAD;
if (out_expert_id < num_experts_per_node + 1)
{
expert_first_token_offset[out_expert_id] = local_expert_first_token_offset[expert_id];
}
}
}
template <int BLOCK_SIZE, int EXPERTS_PER_TOKEN, int LOG2_NUM_EXPERTS>
bool fusedBuildExpertMapsSortFirstTokenDispatch(int const* token_selected_experts,
int* unpermuted_token_selected_experts, int* permuted_source_token_ids, int64_t* expert_first_token_offset,
int64_t const num_tokens, int const num_experts_per_node, int const experts_per_token, int const start_expert,
int const end_expert, cudaStream_t stream)
{
TLLM_CHECK_WITH_INFO(num_experts_per_node == (end_expert - start_expert),
"num_experts_per_node must be equal to end_expert - start_expert");
int const threads = BLOCK_SIZE;
int const blocks = (num_tokens + threads - 1) / threads;
TLLM_CHECK_WITH_INFO(blocks == 1, "Current implementation requires single block");
using BlockRadixRank = cub::BlockRadixRank<BLOCK_SIZE, LOG2_NUM_EXPERTS, false>;
size_t shared_size = sizeof(typename BlockRadixRank::TempStorage);
cudaLaunchConfig_t config;
config.gridDim = blocks;
config.blockDim = threads;
config.dynamicSmemBytes = shared_size;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.numAttrs = 1;
config.attrs = attrs;
auto kernel = &fusedBuildExpertMapsSortFirstTokenKernel<BLOCK_SIZE, EXPERTS_PER_TOKEN, LOG2_NUM_EXPERTS>;
int device = 0;
int max_smem_per_block = 0;
check_cuda_error(cudaGetDevice(&device));
check_cuda_error(cudaDeviceGetAttribute(&max_smem_per_block, cudaDevAttrMaxSharedMemoryPerBlockOptin, device));
if (shared_size >= static_cast<size_t>(max_smem_per_block))
{
// This should mean that
// cudaFuncSetAttribute(cutlass::Kernel<GemmKernel>, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size)
// wouldn't work.
return false;
}
check_cuda_error(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, shared_size));
check_cuda_error(cudaLaunchKernelEx(&config, kernel, token_selected_experts, unpermuted_token_selected_experts,
permuted_source_token_ids, expert_first_token_offset, num_tokens, experts_per_token, start_expert, end_expert,
num_experts_per_node));
return true;
}
template <int EXPERTS_PER_TOKEN, int LOG2_NUM_EXPERTS>
bool fusedBuildExpertMapsSortFirstTokenBlockSize(int const* token_selected_experts,
int* unpermuted_token_selected_experts, int* permuted_source_token_ids, int64_t* expert_first_token_offset,
int64_t const num_tokens, int const num_experts_per_node, int const experts_per_token, int const start_expert,
int const end_expert, cudaStream_t stream)
{
int const block_size = num_tokens;
if (num_tokens > 256)
{
TLLM_LOG_TRACE(
"Number of tokens %d is greater than 256, which is not supported for fused moe prologues", num_tokens);
return false;
}
auto func = &fusedBuildExpertMapsSortFirstTokenDispatch<32, EXPERTS_PER_TOKEN, LOG2_NUM_EXPERTS>;
if (block_size > 32 && block_size <= 64)
{
func = &fusedBuildExpertMapsSortFirstTokenDispatch<64, EXPERTS_PER_TOKEN, LOG2_NUM_EXPERTS>;
}
else if (block_size > 64 && block_size <= 128)
{
func = &fusedBuildExpertMapsSortFirstTokenDispatch<128, EXPERTS_PER_TOKEN, LOG2_NUM_EXPERTS>;
}
else if (block_size > 128 && block_size <= 256)
{
func = &fusedBuildExpertMapsSortFirstTokenDispatch<256, EXPERTS_PER_TOKEN, LOG2_NUM_EXPERTS>;
}
return func(token_selected_experts, unpermuted_token_selected_experts, permuted_source_token_ids,
expert_first_token_offset, num_tokens, num_experts_per_node, experts_per_token, start_expert, end_expert,
stream);
}
template <int LOG2_NUM_EXPERTS>
bool fusedBuildExpertMapsSortFirstTokenBlockSize(int const* token_selected_experts,
int* unpermuted_token_selected_experts, int* permuted_source_token_ids, int64_t* expert_first_token_offset,
int64_t const num_tokens, int const num_experts_per_node, int const experts_per_token, int const start_expert,
int const end_expert, cudaStream_t stream)
{
auto func = &fusedBuildExpertMapsSortFirstTokenBlockSize<1, LOG2_NUM_EXPERTS>;
switch (experts_per_token)
{
case 1:
{
func = &fusedBuildExpertMapsSortFirstTokenBlockSize<1, LOG2_NUM_EXPERTS>;
break;
}
case 2:
{
func = &fusedBuildExpertMapsSortFirstTokenBlockSize<2, LOG2_NUM_EXPERTS>;
break;
}
case 4:
{
func = &fusedBuildExpertMapsSortFirstTokenBlockSize<4, LOG2_NUM_EXPERTS>;
break;
}
case 6:
{
func = &fusedBuildExpertMapsSortFirstTokenBlockSize<6, LOG2_NUM_EXPERTS>;
break;
}
case 8:
{
func = &fusedBuildExpertMapsSortFirstTokenBlockSize<8, LOG2_NUM_EXPERTS>;
break;
}
default:
{
TLLM_LOG_TRACE("Top-K value %d does not have supported fused moe prologues", experts_per_token);
return false;
}
}
return func(token_selected_experts, unpermuted_token_selected_experts, permuted_source_token_ids,
expert_first_token_offset, num_tokens, num_experts_per_node, experts_per_token, start_expert, end_expert,
stream);
}
bool fusedBuildExpertMapsSortFirstToken(int const* token_selected_experts, int* unpermuted_token_selected_experts,
int* permuted_source_token_ids, int64_t* expert_first_token_offset, int64_t const num_tokens,
int const num_experts_per_node, int const experts_per_token, int const start_expert, int const end_expert,
cudaStream_t stream)
{
// We need enough bits to represent [0, num_experts_per_node+1] (inclusive) i.e. num_experts_per_node + 2 values
// This is floor(log2(num_experts_per_node+1)) + 1
int expert_log = static_cast<int>(log2(num_experts_per_node + 1)) + 1;
if (expert_log <= 9)
{
auto funcs = std::array{&fusedBuildExpertMapsSortFirstTokenBlockSize<1>,
&fusedBuildExpertMapsSortFirstTokenBlockSize<2>, &fusedBuildExpertMapsSortFirstTokenBlockSize<3>,
&fusedBuildExpertMapsSortFirstTokenBlockSize<4>, &fusedBuildExpertMapsSortFirstTokenBlockSize<5>,
&fusedBuildExpertMapsSortFirstTokenBlockSize<6>, &fusedBuildExpertMapsSortFirstTokenBlockSize<7>,
&fusedBuildExpertMapsSortFirstTokenBlockSize<8>, &fusedBuildExpertMapsSortFirstTokenBlockSize<9>};
return funcs[expert_log - 1](token_selected_experts, unpermuted_token_selected_experts,
permuted_source_token_ids, expert_first_token_offset, num_tokens, num_experts_per_node, experts_per_token,
start_expert, end_expert, stream);
}
TLLM_LOG_TRACE("Experts per node %d does not have supported fused moe prologues", num_experts_per_node);
return false;
}
// ============================== Infer GEMM sizes =================================
// TODO Could linear search be better for small # experts
template <class T>
__device__ inline int64_t findTotalEltsLessThanTarget(T const* sorted_indices, int64_t const arr_length, T const target)
{
int64_t low = 0, high = arr_length - 1, target_location = -1;
while (low <= high)
{
int64_t mid = (low + high) / 2;
if (sorted_indices[mid] >= target)
{
high = mid - 1;
}
else
{
low = mid + 1;
target_location = mid;
}
}
return target_location + 1;
}
// Calculates the start offset of the tokens for a given expert. The last element is the total number of valid tokens
__global__ void computeExpertFirstTokenOffsetKernel(int const* sorted_experts, int64_t const sorted_experts_len,
int64_t const num_experts_per_node, int64_t* expert_first_token_offset)
{
// First, compute the global tid. We only need 1 thread per expert.
int const expert = blockIdx.x * blockDim.x + threadIdx.x;
// Note that expert goes [0, num_experts] (inclusive) because we want a count for the total number of active tokens
// at the end of the scan.
if (expert >= num_experts_per_node + 1)
{
return;
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
expert_first_token_offset[expert] = findTotalEltsLessThanTarget(sorted_experts, sorted_experts_len, expert);
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
void computeExpertFirstTokenOffset(int const* sorted_indices, int const total_indices, int const num_experts_per_node,
int64_t* expert_first_token_offset, cudaStream_t stream)
{
int const num_entries = num_experts_per_node + 1;
int const threads = std::min(1024, num_entries);
int const blocks = (num_entries + threads - 1) / threads;
cudaLaunchConfig_t config;
config.gridDim = blocks;
config.blockDim = threads;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, computeExpertFirstTokenOffsetKernel, sorted_indices, total_indices,
num_experts_per_node, expert_first_token_offset);
}
template <class T>
using sizeof_bits = cutlass::sizeof_bits<typename cutlass_kernels::TllmToCutlassTypeAdapter<std::remove_cv_t<T>>::type>;
// Function to safely offset an pointer that may contain sub-byte types (FP4/INT4)
template <class T>
__host__ __device__ constexpr T* safe_inc_ptr(T* ptr, size_t offset)
{
constexpr int adjustment = (sizeof_bits<T>::value < 8) ? (8 / sizeof_bits<T>::value) : 1;
assert(offset % adjustment == 0 && "Attempt to offset index to sub-byte");
return ptr + offset / adjustment;
}
__host__ __device__ constexpr int64_t getOffsetActivationSF(int64_t expert_id, int64_t token_offset, int64_t gemm_k,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType scaling_type)
{
auto function = [=](int64_t min_alignment, int64_t block_size)
{
// This formulation ensures that sf_offset[i + 1] - sf_offset[i] >= token_offset[i + 1] - token_offset[i].
int64_t sf_offset = (token_offset + expert_id * (min_alignment - 1)) / min_alignment * min_alignment;
assert(gemm_k % block_size == 0);
return sf_offset * gemm_k / block_size;
};
switch (scaling_type)
{
case cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType::MXFPX:
return function(cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::MinNumRowsAlignmentMXFPX,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::MXFPXBlockScaleVectorSize);
case cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType::NVFP4:
return function(cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::MinNumRowsAlignmentNVFP4,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::NVFP4BlockScaleVectorSize);
case cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType::NONE:
return 0; // No scaling factors, no offset
}
assert(false && "Unrecognized scaling type");
return 0;
}
constexpr static int NVFP4_VEC_SIZE = 16;
template <class GemmOutputType, class ComputeElem>
__device__ uint32_t quantizePackedFP4Value(ComputeElem& post_act_val, float global_scale_val,
int64_t num_tokens_before_expert, int64_t expert_id, int64_t token_id, int64_t elem_idx, int64_t num_cols,
int64_t max_tokens_per_expert, cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF* act_sf_flat,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType scaling_type)
{
static constexpr int CVT_FP4_NUM_THREADS_PER_SF = NVFP4_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD;
// Quantize the input to FP4
static_assert(std::is_same_v<GemmOutputType, __nv_bfloat16> || std::is_same_v<GemmOutputType, half>);
static_assert(ComputeElem::kElements == CVT_FP4_ELTS_PER_THREAD);
PackedVec<GemmOutputType> packed_vec{};
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++)
{
packed_vec.elts[i].x = static_cast<GemmOutputType>(post_act_val[i * 2 + 0]);
packed_vec.elts[i].y = static_cast<GemmOutputType>(post_act_val[i * 2 + 1]);
}
// We need to offset into the scaling factors for just this expert
auto act_sf_expert
= act_sf_flat + getOffsetActivationSF(expert_id, num_tokens_before_expert, num_cols, scaling_type);
// Use `token - num_tokens_before_expert` because we want this to be relative to the start of this expert
auto sf_out = cvt_quant_to_fp4_get_sf_out_offset<cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF,
CVT_FP4_NUM_THREADS_PER_SF, NVFP4_VEC_SIZE>(std::nullopt /* batchIdx */, token_id - num_tokens_before_expert,
elem_idx, std::nullopt /* numRows */, num_cols, act_sf_expert, FP4QuantizationSFLayout::SWIZZLED);
// Do the conversion and set the output and scaling factor
auto func = (scaling_type == cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType::NVFP4)
? &cvt_warp_fp16_to_fp4<GemmOutputType, NVFP4_VEC_SIZE, false>
: &cvt_warp_fp16_to_fp4<GemmOutputType, NVFP4_VEC_SIZE, true>;
auto res = func(packed_vec, global_scale_val, sf_out);
return res;
}
__device__ void writeSF(int64_t num_tokens_before_expert, int64_t expert_id, int64_t source_token_id, int64_t token_id,
int64_t elem_idx, int64_t num_cols, int64_t max_tokens_per_expert,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF* act_sf_flat,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF const* input_sf)
{
static constexpr int CVT_FP4_NUM_THREADS_PER_SF = NVFP4_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD;
// We need to offset into the scaling factors for just this expert
auto act_sf_expert = act_sf_flat
+ getOffsetActivationSF(expert_id, num_tokens_before_expert, num_cols,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType::NVFP4);
// Use `token - num_tokens_before_expert` because we want this to be relative to the start of this expert
auto sf_out = cvt_quant_to_fp4_get_sf_out_offset<cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF,
CVT_FP4_NUM_THREADS_PER_SF, NVFP4_VEC_SIZE>(std::nullopt /* batchIdx */, token_id - num_tokens_before_expert,
elem_idx, std::nullopt /* numRows */, num_cols, act_sf_expert, FP4QuantizationSFLayout::SWIZZLED);
if (sf_out)
{
auto const sf_in
= cvt_quant_to_fp4_get_sf_out_offset<cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF,
CVT_FP4_NUM_THREADS_PER_SF, NVFP4_VEC_SIZE>(std::nullopt /* batchIdx */, source_token_id, elem_idx,
std::nullopt /* numRows */, num_cols,
const_cast<cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF*>(input_sf),
FP4QuantizationSFLayout::SWIZZLED);
*sf_out = *sf_in;
}
}
void generateTokenPermutation(int const* unpermuted_token_selected_experts, int const* unpermuted_source_token_ids,
int* permuted_token_selected_experts, int* permuted_source_token_ids, int64_t* expert_first_token_offset,
int64_t num_rows, int64_t num_experts_per_node, int64_t k, CubKeyValueSorter& sorter, void* sorter_ws,
cudaStream_t stream)
{
int64_t const expanded_num_rows = k * num_rows;
sorter.updateNumExperts(num_experts_per_node);
size_t const sorter_ws_size_bytes
= pad_to_multiple_of_16(sorter.getWorkspaceSize(expanded_num_rows, num_experts_per_node));
sorter.run((void*) sorter_ws, sorter_ws_size_bytes, unpermuted_token_selected_experts,
permuted_token_selected_experts, unpermuted_source_token_ids, permuted_source_token_ids, expanded_num_rows,
stream);
sync_check_cuda_error(stream);
// Upper bound on number of expanded rows
computeExpertFirstTokenOffset(
permuted_token_selected_experts, expanded_num_rows, num_experts_per_node, expert_first_token_offset, stream);
}
/**
* Takes the input maps and prepares the expanded maps for the sort step
* @param unpermuted_token_selected_experts: Buffer of transformed expert ids masked for the current node, used as the
* keys for the sort
* @param unpermuted_source_token_ids: Buffer of unpermuted token ids that will be used to identify the source row for
* each expanded token, used as the values for the sort
*/
__global__ void buildExpertMapsKernel(int const* token_selected_experts, int* unpermuted_token_selected_experts,
int* unpermuted_source_token_ids, int64_t const num_tokens, int const experts_per_token, int const start_expert,
int const end_expert, int const num_experts_per_node)
{
int const token = blockIdx.x * blockDim.x + threadIdx.x;
if (token >= num_tokens)
{
return;
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
for (int i = 0; i < experts_per_token; i++)
{
int const expert = token_selected_experts[token * experts_per_token + i];
// If expert is not in the current node, set it to num_experts_per_node
// If expert is in the current node, subtract start_expert to shift the range to [0, num_experts_per_node)
bool is_valid_expert = expert >= start_expert && expert < end_expert;
unpermuted_token_selected_experts[token * experts_per_token + i]
= is_valid_expert ? (expert - start_expert) : num_experts_per_node;
unpermuted_source_token_ids[token * experts_per_token + i] = i * num_tokens + token;
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
void buildExpertMaps(int const* token_selected_experts, int* unpermuted_token_selected_experts,
int* unpermuted_source_token_ids, int64_t const num_tokens, int const num_experts_per_node,
int const experts_per_token, int const start_expert, int const end_expert, cudaStream_t stream)
{
TLLM_CHECK_WITH_INFO(num_experts_per_node == (end_expert - start_expert),
"num_experts_per_node must be equal to end_expert - start_expert");
int const threads = std::min(int64_t(1024), num_tokens);
int const blocks = (num_tokens + threads - 1) / threads;
cudaLaunchConfig_t config;
config.gridDim = blocks;
config.blockDim = threads;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, buildExpertMapsKernel, token_selected_experts, unpermuted_token_selected_experts,
unpermuted_source_token_ids, num_tokens, experts_per_token, start_expert, end_expert, num_experts_per_node);
}
// ========================== Permutation things =======================================
template <class T, class U>
__host__ __device__ constexpr static U arrayConvert(T const& input)
{
using Type = typename U::Element;
static_assert(T::kElements == U::kElements);
U u;
#pragma unroll
for (int i = 0; i < U::kElements; i++)
{
u[i] = static_cast<Type>(input[i]);
}
return u;
}
// Duplicated and permutes rows for MoE. In addition, reverse the permutation map to help with finalizing routing.
// "expanded_x_row" simply means that the number of values is num_rows x k. It is "expanded" since we will have to
// duplicate some rows in the input matrix to match the dimensions. Duplicates will always get routed to separate
// experts in the end.
// Note that the expanded_dest_row_to_expanded_source_row map referred to here has indices in the range (0,
// k*rows_in_input - 1). However, it is set up so that index 0, rows_in_input, 2*rows_in_input ... (k-1)*rows_in_input
// all map to row 0 in the original matrix. Thus, to know where to read in the source matrix, we simply take the modulus
// of the expanded index.
constexpr static int EXPAND_THREADS_PER_BLOCK = 256;
template <class InputActivationsType, class ExpandedActivationsType, bool CHECK_SKIPPED>
__global__ void expandInputRowsKernel(InputActivationsType const* unpermuted_input,
ExpandedActivationsType* permuted_output, float const* unpermuted_scales, float* permuted_scales,
int const* expanded_dest_row_to_expanded_source_row, int* expanded_source_row_to_expanded_dest_row,
int64_t const num_rows, int64_t const* num_dest_rows, int64_t const cols, int64_t k,
float const* fc1_act_global_scale, int64_t* expert_first_token_offset,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF* fc1_act_sf_flat,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF const* input_sf, int64_t num_experts_per_node)
{
#ifdef ENABLE_FP4
constexpr bool is_fp4 = std::is_same_v<ExpandedActivationsType, __nv_fp4_e2m1>;
constexpr bool is_fp4_input = is_fp4 && std::is_same_v<InputActivationsType, __nv_fp4_e2m1>;
constexpr bool need_fp4_quant = is_fp4 && !std::is_same_v<InputActivationsType, __nv_fp4_e2m1>;
#else
constexpr bool is_fp4 = false;
constexpr bool is_fp4_input = false;
constexpr bool need_fp4_quant = false;
#endif
static_assert(need_fp4_quant || std::is_same_v<InputActivationsType, ExpandedActivationsType>,
"Only FP4 quantization supports outputting a different format as part of the expansion");
// Reverse permutation map.
// I do this so that later, we can use the source -> dest map to do the k-way reduction and unpermuting. I need the
// reverse map for that reduction to allow each threadblock to do 1 k-way reduce without atomics later in MoE. 1
// thread block will be responsible for all k summations.
int64_t const expanded_dest_row = blockIdx.x;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
int64_t const expanded_source_row = expanded_dest_row_to_expanded_source_row[expanded_dest_row];
if (threadIdx.x == 0)
{
assert(expanded_dest_row <= INT32_MAX);
expanded_source_row_to_expanded_dest_row[expanded_source_row] = static_cast<int>(expanded_dest_row);
}
if (!CHECK_SKIPPED || blockIdx.x < *num_dest_rows)
{
// Load 128-bits per thread
constexpr int64_t ELEM_PER_THREAD
= is_fp4 ? CVT_FP4_ELTS_PER_THREAD : (128 / sizeof_bits<InputActivationsType>::value);
constexpr int64_t ELEM_PER_BYTE = is_fp4_input ? 2 : 1;
using DataElem
= std::conditional_t<is_fp4_input, uint32_t, cutlass::Array<InputActivationsType, ELEM_PER_THREAD>>;
using OutputElem = std::conditional_t<is_fp4, uint32_t, DataElem>;
// Duplicate and permute rows
int64_t const source_k_rank = expanded_source_row / num_rows;
int64_t const source_row = expanded_source_row % num_rows;
auto const* source_row_ptr
= reinterpret_cast<DataElem const*>(unpermuted_input + source_row * cols / ELEM_PER_BYTE);
// Cast first to handle when this is FP4
auto* dest_row_ptr
= reinterpret_cast<OutputElem*>(permuted_output) + expanded_dest_row * cols / ELEM_PER_THREAD;
int64_t const start_offset = threadIdx.x;
int64_t const stride = EXPAND_THREADS_PER_BLOCK;
int64_t const num_elems_in_col = cols / ELEM_PER_THREAD;
assert(cols % ELEM_PER_THREAD == 0);
if constexpr (is_fp4)
{
int64_t expert = findTotalEltsLessThanTarget(
expert_first_token_offset, num_experts_per_node, (int64_t) expanded_dest_row + 1)
- 1;
float global_scale_val = fc1_act_global_scale ? *fc1_act_global_scale : 1.0f;
int64_t num_tokens_before_expert = expert_first_token_offset[expert];
for (int elem_index = start_offset; elem_index < num_elems_in_col; elem_index += stride)
{
auto in_vec = source_row_ptr[elem_index];
if constexpr (need_fp4_quant)
{
// auto res = quantizePackedFP4Value<InputActivationsType, DataElem>(in_vec, global_scale_val,
// num_tokens_before_expert, expert, expanded_dest_row, elem_index, cols, num_rows,
// fc1_act_sf_flat);
auto res = quantizePackedFP4Value<InputActivationsType, DataElem>(in_vec, global_scale_val,
num_tokens_before_expert, expert, expanded_dest_row, elem_index, cols, num_rows,
fc1_act_sf_flat,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::FpXBlockScalingType::NVFP4);
dest_row_ptr[elem_index] = res;
}
else
{
writeSF(num_tokens_before_expert, expert, source_row, expanded_dest_row, elem_index, cols, num_rows,
fc1_act_sf_flat, input_sf);
dest_row_ptr[elem_index] = in_vec;
}
}
}
else
{
for (int elem_index = start_offset; elem_index < num_elems_in_col; elem_index += stride)
{
dest_row_ptr[elem_index] = source_row_ptr[elem_index];
}
}
if (permuted_scales && threadIdx.x == 0)
{
int64_t const source_k_idx = source_row * k + source_k_rank;
permuted_scales[expanded_dest_row] = unpermuted_scales ? unpermuted_scales[source_k_idx] : 1.0f;
}
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <class InputActivationsType, class ExpandedActivationsType>
void expandInputRowsKernelLauncher(InputActivationsType const* unpermuted_input,
ExpandedActivationsType* permuted_output, float const* unpermuted_scales, float* permuted_scales,
int const* expanded_dest_row_to_expanded_source_row, int* expanded_source_row_to_expanded_dest_row,
int64_t const num_rows, int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
int const num_experts_per_node, float const* fc1_act_global_scale, int64_t* expert_first_token_offset,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF* fc1_act_sf_flat,
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF const* input_sf, cudaStream_t stream)
{
if (fc1_act_sf_flat)
{
assert(false && "Not supported, we need to keep the same as moe_kerenls.cu in the future (TODO).");
}
int64_t const blocks = num_rows * k;
int64_t const threads = EXPAND_THREADS_PER_BLOCK;
auto func = (num_valid_tokens_ptr != nullptr)
? expandInputRowsKernel<InputActivationsType, ExpandedActivationsType, true>
: expandInputRowsKernel<InputActivationsType, ExpandedActivationsType, false>;
cudaLaunchConfig_t config;
config.gridDim = blocks;
config.blockDim = threads;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, func, unpermuted_input, permuted_output, unpermuted_scales, permuted_scales,
expanded_dest_row_to_expanded_source_row, expanded_source_row_to_expanded_dest_row, num_rows,
num_valid_tokens_ptr, cols, k, fc1_act_global_scale, expert_first_token_offset, fc1_act_sf_flat, input_sf,
num_experts_per_node);
}
#define INSTANTIATE_EXPAND_INPUT_ROWS(InputActivationsType, ExpandedActivationsType) \
template void expandInputRowsKernelLauncher<InputActivationsType, ExpandedActivationsType>( \
InputActivationsType const* unpermuted_input, ExpandedActivationsType* permuted_output, \
float const* unpermuted_scales, float* permuted_scales, int const* expanded_dest_row_to_expanded_source_row, \
int* expanded_source_row_to_expanded_dest_row, int64_t const num_rows, int64_t const* num_valid_tokens_ptr, \
int64_t const cols, int const k, int const num_experts_per_node, float const* fc1_act_global_scale, \
int64_t* expert_first_token_offset, \
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF* fc1_act_sf_flat, \
cutlass_kernels::TmaWarpSpecializedGroupedGemmInput::ElementSF const* input_sf, cudaStream_t stream);
INSTANTIATE_EXPAND_INPUT_ROWS(half, half);
INSTANTIATE_EXPAND_INPUT_ROWS(float, float);
#ifdef ENABLE_BF16
INSTANTIATE_EXPAND_INPUT_ROWS(__nv_bfloat16, __nv_bfloat16);
#endif
enum class ScaleMode : int
{
NO_SCALE = 0,
DEFAULT = 1,
};
constexpr static int FINALIZE_THREADS_PER_BLOCK = 256;
template <class T>
using sizeof_bits = cutlass::sizeof_bits<typename cutlass_kernels::TllmToCutlassTypeAdapter<std::remove_cv_t<T>>::type>;
// Final kernel to unpermute and scale
// This kernel unpermutes the original data, does the k-way reduction and performs the final skip connection.
template <typename OutputType, class GemmOutputType, class ScaleBiasType, ScaleMode SCALE_MODE, bool CHECK_SKIPPED>
__global__ void finalizeMoeRoutingKernel(GemmOutputType const* expanded_permuted_rows,
OutputType* reduced_unpermuted_output, ScaleBiasType const* bias, float const* scales,
int const* expanded_source_row_to_expanded_dest_row, int const* expert_for_source_row, int64_t const orig_cols,
int64_t const experts_per_token, int64_t const* num_valid_ptr)
{
assert(orig_cols % 4 == 0);
int64_t const original_row = blockIdx.x;
int64_t const num_rows = gridDim.x;
auto const offset = original_row * orig_cols;
OutputType* reduced_row_ptr = reduced_unpermuted_output + offset;
// Load 128-bits per thread, according to the smallest data type we read/write
constexpr int64_t FINALIZE_ELEM_PER_THREAD
= 128 / std::min(sizeof_bits<OutputType>::value, sizeof_bits<GemmOutputType>::value);
int64_t const start_offset = threadIdx.x;
int64_t const stride = FINALIZE_THREADS_PER_BLOCK;
int64_t const num_elems_in_col = orig_cols / FINALIZE_ELEM_PER_THREAD;
using BiasElem = cutlass::Array<ScaleBiasType, FINALIZE_ELEM_PER_THREAD>;
using InputElem = cutlass::Array<GemmOutputType, FINALIZE_ELEM_PER_THREAD>;
using OutputElem = cutlass::Array<OutputType, FINALIZE_ELEM_PER_THREAD>;
using ComputeElem = cutlass::Array<float, FINALIZE_ELEM_PER_THREAD>;
auto const* bias_v = reinterpret_cast<BiasElem const*>(bias);
auto const* expanded_permuted_rows_v = reinterpret_cast<InputElem const*>(expanded_permuted_rows);
auto* reduced_row_ptr_v = reinterpret_cast<OutputElem*>(reduced_row_ptr);
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.wait;");
#endif
int64_t const num_valid = *num_valid_ptr;
#pragma unroll
for (int elem_index = start_offset; elem_index < num_elems_in_col; elem_index += stride)
{
bool has_valid = false;
ComputeElem thread_output;
thread_output.fill(0);
for (int k_idx = 0; k_idx < experts_per_token; ++k_idx)
{
int64_t const expanded_original_row = original_row + k_idx * num_rows;
int64_t const expanded_permuted_row = expanded_source_row_to_expanded_dest_row[expanded_original_row];
int64_t const k_offset = original_row * experts_per_token + k_idx;
float const row_scale = (SCALE_MODE == ScaleMode::NO_SCALE) ? 1.f : scales[k_offset];
// Check after row_rescale has accumulated
if (CHECK_SKIPPED && expanded_permuted_row >= num_valid)
{
continue;
}
auto const* expanded_permuted_rows_row_ptr
= expanded_permuted_rows_v + expanded_permuted_row * num_elems_in_col;
int64_t const expert_idx = expert_for_source_row[k_offset];
auto const* bias_ptr = bias_v + expert_idx * num_elems_in_col;
ComputeElem bias_value;
if (bias)
{
bias_value = arrayConvert<BiasElem, ComputeElem>(bias_ptr[elem_index]);
}
else
{
bias_value.fill(0);
}
ComputeElem expert_result
= arrayConvert<InputElem, ComputeElem>(expanded_permuted_rows_row_ptr[elem_index]);
thread_output = thread_output + row_scale * (expert_result + bias_value);
has_valid = true;
}
OutputElem output_elem = arrayConvert<ComputeElem, OutputElem>(thread_output);
reduced_row_ptr_v[elem_index] = output_elem;
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("griddepcontrol.launch_dependents;");
#endif
}
template <class OutputType, class GemmOutputType, class ScaleBiasType>
void finalizeMoeRoutingKernelLauncher(GemmOutputType const* expanded_permuted_rows,
OutputType* reduced_unpermuted_output, ScaleBiasType const* bias, float const* final_scales,
int const* expanded_source_row_to_expanded_dest_row, int const* expert_for_source_row, int64_t const num_rows,
int64_t const cols, int64_t const experts_per_token, int64_t const* num_valid_ptr,
cutlass_kernels::MOEParallelismConfig parallelism_config, cudaStream_t stream)
{
int64_t const blocks = num_rows;
int64_t const threads = FINALIZE_THREADS_PER_BLOCK;
// Only add bias on rank 0 for tensor parallelism
bool const is_rank_0 = parallelism_config.tp_rank == 0;
ScaleBiasType const* bias_ptr = is_rank_0 ? bias : nullptr;
bool const check_skipped = num_valid_ptr != nullptr;
ScaleMode scale_mode = final_scales ? ScaleMode::DEFAULT : ScaleMode::NO_SCALE;
using FuncPtr
= decltype(&finalizeMoeRoutingKernel<OutputType, GemmOutputType, ScaleBiasType, ScaleMode::DEFAULT, false>);
FuncPtr func_map[2][3] = {
{
&finalizeMoeRoutingKernel<OutputType, GemmOutputType, ScaleBiasType, ScaleMode::NO_SCALE, false>,
&finalizeMoeRoutingKernel<OutputType, GemmOutputType, ScaleBiasType, ScaleMode::DEFAULT, false>,
},
{
&finalizeMoeRoutingKernel<OutputType, GemmOutputType, ScaleBiasType, ScaleMode::NO_SCALE, true>,
&finalizeMoeRoutingKernel<OutputType, GemmOutputType, ScaleBiasType, ScaleMode::DEFAULT, true>,
},
};
auto* const func = func_map[check_skipped][int(scale_mode)];
cudaLaunchConfig_t config;
config.gridDim = blocks;
config.blockDim = threads;
config.dynamicSmemBytes = 0;
config.stream = stream;
cudaLaunchAttribute attrs[1];
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL();
config.numAttrs = 1;
config.attrs = attrs;
cudaLaunchKernelEx(&config, func, expanded_permuted_rows, reduced_unpermuted_output, bias_ptr, final_scales,
expanded_source_row_to_expanded_dest_row, expert_for_source_row, cols, experts_per_token, num_valid_ptr);
}
#define INSTANTIATE_FINALIZE_MOE_ROUTING(OutputT, GemmOutputT, ScaleBiasT) \
template void finalizeMoeRoutingKernelLauncher<OutputT, GemmOutputT, ScaleBiasT>( \
GemmOutputT const* expanded_permuted_rows, OutputT* reduced_unpermuted_output, ScaleBiasT const* bias, \
float const* final_scales, int const* expanded_source_row_to_expanded_dest_row, \
int const* expert_for_source_row, int64_t const num_rows, int64_t const cols, int64_t const experts_per_token, \
int64_t const* num_valid_ptr, cutlass_kernels::MOEParallelismConfig parallelism_config, cudaStream_t stream);
INSTANTIATE_FINALIZE_MOE_ROUTING(half, half, half);
INSTANTIATE_FINALIZE_MOE_ROUTING(float, float, float);
#ifdef ENABLE_BF16
INSTANTIATE_FINALIZE_MOE_ROUTING(__nv_bfloat16, __nv_bfloat16, __nv_bfloat16);
#endif
} // namespace tensorrt_llm::kernels