mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
880 lines
55 KiB
HTML
880 lines
55 KiB
HTML
|
|
|
|
<!DOCTYPE html>
|
|
|
|
|
|
<html lang="en" data-content_root="../../" >
|
|
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
|
|
<title>Useful Runtime Options — TensorRT-LLM</title>
|
|
|
|
|
|
|
|
<script data-cfasync="false">
|
|
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
|
|
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
|
|
</script>
|
|
<!--
|
|
this give us a css class that will be invisible only if js is disabled
|
|
-->
|
|
<noscript>
|
|
<style>
|
|
.pst-js-only { display: none !important; }
|
|
|
|
</style>
|
|
</noscript>
|
|
|
|
<!-- Loaded before other Sphinx assets -->
|
|
<link href="../../_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
|
<link href="../../_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
|
|
|
|
<link rel="stylesheet" type="text/css" href="../../_static/pygments.css?v=8f2a1f02" />
|
|
<link rel="stylesheet" type="text/css" href="../../_static/styles/nvidia-sphinx-theme.css?v=df3ac72c" />
|
|
<link rel="stylesheet" type="text/css" href="../../_static/copybutton.css?v=76b2166b" />
|
|
<link rel="stylesheet" type="text/css" href="../../_static/autodoc_pydantic.css" />
|
|
|
|
<!-- So that users can add custom icons -->
|
|
<script src="../../_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
|
|
<!-- Pre-loaded scripts that we'll load fully later -->
|
|
<link rel="preload" as="script" href="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
|
|
<link rel="preload" as="script" href="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
|
|
|
|
<script src="../../_static/documentation_options.js?v=5929fcd5"></script>
|
|
<script src="../../_static/doctools.js?v=9a2dae69"></script>
|
|
<script src="../../_static/sphinx_highlight.js?v=dc90522c"></script>
|
|
<script src="../../_static/clipboard.min.js?v=a7894cd8"></script>
|
|
<script src="../../_static/copybutton.js?v=65e89d2a"></script>
|
|
<script>DOCUMENTATION_OPTIONS.pagename = 'performance/performance-tuning-guide/useful-runtime-flags';</script>
|
|
<script>
|
|
DOCUMENTATION_OPTIONS.theme_version = '0.16.1';
|
|
DOCUMENTATION_OPTIONS.theme_switcher_json_url = './_static/switcher.json';
|
|
DOCUMENTATION_OPTIONS.theme_switcher_version_match = '0.21.0rc2';
|
|
DOCUMENTATION_OPTIONS.show_version_warning_banner =
|
|
false;
|
|
</script>
|
|
<link rel="icon" href="../../_static/favicon.png"/>
|
|
<link rel="index" title="Index" href="../../genindex.html" />
|
|
<link rel="search" title="Search" href="../../search.html" />
|
|
<link rel="next" title="Performance Analysis" href="../perf-analysis.html" />
|
|
<link rel="prev" title="FP8 Quantization" href="fp8-quantization.html" />
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1"/>
|
|
<meta name="docsearch:language" content="en"/>
|
|
<meta name="docsearch:version" content="0.21.0rc2" />
|
|
|
|
|
|
</head>
|
|
|
|
|
|
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
|
|
|
|
|
|
|
|
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
|
|
|
|
<div id="pst-scroll-pixel-helper"></div>
|
|
|
|
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
|
|
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
|
|
|
|
|
|
<dialog id="pst-search-dialog">
|
|
|
|
<form class="bd-search d-flex align-items-center"
|
|
action="../../search.html"
|
|
method="get">
|
|
<i class="fa-solid fa-magnifying-glass"></i>
|
|
<input type="search"
|
|
class="form-control"
|
|
name="q"
|
|
placeholder="Search the docs ..."
|
|
aria-label="Search the docs ..."
|
|
autocomplete="off"
|
|
autocorrect="off"
|
|
autocapitalize="off"
|
|
spellcheck="false"/>
|
|
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
|
|
</form>
|
|
</dialog>
|
|
|
|
<div class="pst-async-banner-revealer d-none">
|
|
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
|
|
</div>
|
|
|
|
|
|
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
|
|
<div class="bd-header__inner bd-page-width">
|
|
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
|
|
<span class="fa-solid fa-bars"></span>
|
|
</button>
|
|
|
|
|
|
<div class="col-lg-3 navbar-header-items__start">
|
|
|
|
<div class="navbar-item">
|
|
|
|
|
|
|
|
|
|
|
|
<a class="navbar-brand logo" href="../../index.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<img src="../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
|
|
<img src="../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
|
|
|
|
|
|
<p class="title logo__title">TensorRT-LLM</p>
|
|
|
|
</a></div>
|
|
|
|
</div>
|
|
|
|
<div class="col-lg-9 navbar-header-items">
|
|
|
|
<div class="me-auto navbar-header-items__center">
|
|
|
|
<div class="navbar-item">
|
|
|
|
|
|
<div class="version-switcher__container dropdown pst-js-only">
|
|
<button id="pst-version-switcher-button-2"
|
|
type="button"
|
|
class="version-switcher__button btn btn-sm dropdown-toggle"
|
|
data-bs-toggle="dropdown"
|
|
aria-haspopup="listbox"
|
|
aria-controls="pst-version-switcher-list-2"
|
|
aria-label="Version switcher list"
|
|
>
|
|
Choose version <!-- this text may get changed later by javascript -->
|
|
<span class="caret"></span>
|
|
</button>
|
|
<div id="pst-version-switcher-list-2"
|
|
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
|
role="listbox" aria-labelledby="pst-version-switcher-button-2">
|
|
<!-- dropdown will be populated by javascript on page load -->
|
|
</div>
|
|
</div></div>
|
|
|
|
</div>
|
|
|
|
|
|
<div class="navbar-header-items__end">
|
|
|
|
<div class="navbar-item navbar-persistent--container">
|
|
|
|
|
|
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
|
<i class="fa-solid fa-magnifying-glass"></i>
|
|
<span class="search-button__default-text">Search</span>
|
|
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
|
</button>
|
|
</div>
|
|
|
|
|
|
<div class="navbar-item">
|
|
|
|
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
|
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
|
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
|
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
|
</button></div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
<div class="navbar-persistent--mobile">
|
|
|
|
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
|
<i class="fa-solid fa-magnifying-glass"></i>
|
|
<span class="search-button__default-text">Search</span>
|
|
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
|
|
</button>
|
|
</div>
|
|
|
|
|
|
|
|
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
|
|
<span class="fa-solid fa-outdent"></span>
|
|
</button>
|
|
|
|
</div>
|
|
|
|
</header>
|
|
|
|
|
|
<div class="bd-container">
|
|
<div class="bd-container__inner bd-page-width">
|
|
|
|
|
|
|
|
<dialog id="pst-primary-sidebar-modal"></dialog>
|
|
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<a class="navbar-brand logo" href="../../index.html">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<img src="../../_static/nvidia-logo-horiz-rgb-blk-for-screen.svg" class="logo__image only-light" alt="TensorRT-LLM - Home"/>
|
|
<img src="../../_static/nvidia-logo-horiz-rgb-wht-for-screen.svg" class="logo__image only-dark pst-js-only" alt="TensorRT-LLM - Home"/>
|
|
|
|
|
|
<p class="title logo__title">TensorRT-LLM</p>
|
|
|
|
</a>
|
|
|
|
|
|
|
|
<div class="sidebar-header-items sidebar-primary__section">
|
|
|
|
|
|
<div class="sidebar-header-items__center">
|
|
|
|
|
|
|
|
<div class="navbar-item">
|
|
|
|
|
|
<div class="version-switcher__container dropdown pst-js-only">
|
|
<button id="pst-version-switcher-button-3"
|
|
type="button"
|
|
class="version-switcher__button btn btn-sm dropdown-toggle"
|
|
data-bs-toggle="dropdown"
|
|
aria-haspopup="listbox"
|
|
aria-controls="pst-version-switcher-list-3"
|
|
aria-label="Version switcher list"
|
|
>
|
|
Choose version <!-- this text may get changed later by javascript -->
|
|
<span class="caret"></span>
|
|
</button>
|
|
<div id="pst-version-switcher-list-3"
|
|
class="version-switcher__menu dropdown-menu list-group-flush py-0"
|
|
role="listbox" aria-labelledby="pst-version-switcher-button-3">
|
|
<!-- dropdown will be populated by javascript on page load -->
|
|
</div>
|
|
</div></div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
<div class="sidebar-header-items__end">
|
|
|
|
<div class="navbar-item">
|
|
|
|
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
|
|
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
|
|
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
|
|
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
|
|
</button></div>
|
|
|
|
</div>
|
|
|
|
</div>
|
|
|
|
<div class="sidebar-primary-items__start sidebar-primary__section">
|
|
<div class="sidebar-primary-item">
|
|
|
|
|
|
|
|
<nav class="bd-docs-nav bd-links"
|
|
aria-label="Table of Contents">
|
|
<p class="bd-links__title" role="heading" aria-level="1">Table of Contents</p>
|
|
<div class="bd-toc-item navbar-nav"><p aria-level="2" class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../quick-start-guide.html">Quick Start Guide</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../key-features.html">Key Features</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../torch.html">PyTorch Backend</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../release-notes.html">Release Notes</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Installation</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../installation/linux.html">Installing on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">LLM API</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../llm-api/index.html">API Introduction</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../llm-api/reference.html">API Reference</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Examples</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/index.html">LLM Examples Introduction</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_eagle_decoding.html">Generate Text Using Eagle Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_eagle2_decoding.html">Generate Text Using Eagle2 Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_kv_events.html">Get KV Cache Events</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_quantization.html">Generation with Quantization</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference.html">Generate text</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_customize.html">Generate text with customization</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_llm_distributed.html">Llm Mgmn Llm Distributed</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_bench.html">Llm Mgmn Trtllm Bench</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_serve.html">Llm Mgmn Trtllm Serve</a></li>
|
|
</ul>
|
|
</details></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../examples/customization.html">LLM Common Customizations</a></li>
|
|
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/llm_api_examples.html">LLM Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_medusa_decoding.html">Generate Text Using Medusa Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_multilora.html">Generate text with multiple LoRA adapters</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_eagle_decoding.html">Generate Text Using Eagle Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async.html">Generate Text Asynchronously</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_distributed.html">Distributed LLM Generation</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_logits_processor.html">Control generated text using logits processor</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_eagle2_decoding.html">Generate Text Using Eagle2 Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_kv_events.html">Get KV Cache Events</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_lookahead_decoding.html">Generate Text Using Lookahead Decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_quantization.html">Generation with Quantization</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_async_streaming.html">Generate Text in Streaming</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_guided_decoding.html">Generate text with guided decoding</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference.html">Generate text</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_inference_customize.html">Generate text with customization</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_auto_parallel.html">Automatic Parallelism with LLM</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_llm_distributed.html">Llm Mgmn Llm Distributed</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_bench.html">Llm Mgmn Trtllm Bench</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/llm_mgmn_trtllm_serve.html">Llm Mgmn Trtllm Serve</a></li>
|
|
</ul>
|
|
</details></li>
|
|
<li class="toctree-l1 has-children"><a class="reference internal" href="../../examples/trtllm_serve_examples.html">Online Serving Examples</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_chat_client.html">Curl Chat Client</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_chat_client_for_multimodal.html">Curl Chat Client For Multimodal</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/curl_completion_client.html">Curl Completion Client</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/deepseek_r1_reasoning_parser.html">Deepseek R1 Reasoning Parser</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/genai_perf_client.html">Genai Perf Client</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/genai_perf_client_for_multimodal.html">Genai Perf Client For Multimodal</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_chat_client.html">OpenAI Chat Client</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_chat_client_for_multimodal.html">OpenAI Chat Client</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="../../examples/openai_completion_client.html">OpenAI Completion Client</a></li>
|
|
</ul>
|
|
</details></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.layers.html">Layers</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.functional.html">Functionals</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.models.html">Models</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">C++ API</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../_cpp_gen/executor.html">Executor</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../_cpp_gen/runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../commands/trtllm-build.html">trtllm-build</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../commands/trtllm-serve.html">trtllm-serve</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Architecture</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../architecture/overview.html">TensorRT-LLM Architecture</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../architecture/core-concepts.html">Model Definition</a></li>
|
|
|
|
|
|
|
|
<li class="toctree-l1"><a class="reference internal" href="../../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../architecture/add-model.html">Adding a Model</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Advanced</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/executor.html">Executor API</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/lora.html">Run gpt-2b + LoRA using Executor / cpp runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/kv-cache-management.html">KV Cache Management: Pools, Blocks, and Events</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/speculative-decoding.html">Speculative Sampling</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Performance</span></p>
|
|
<ul class="current nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../perf-overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../perf-benchmarking.html">Benchmarking</a></li>
|
|
<li class="toctree-l1 current active has-children"><a class="reference internal" href="index.html">Performance Tuning Guide</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
|
|
<li class="toctree-l2"><a class="reference internal" href="benchmarking-default-performance.html">Benchmarking Default Performance</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="useful-build-time-flags.html">Useful Build-Time Flags</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="tuning-max-batch-size-and-max-num-tokens.html">Tuning Max Batch Size and Max Num Tokens</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="deciding-model-sharding-strategy.html">Deciding Model Sharding Strategy</a></li>
|
|
<li class="toctree-l2"><a class="reference internal" href="fp8-quantization.html">FP8 Quantization</a></li>
|
|
<li class="toctree-l2 current active"><a class="current reference internal" href="#">Useful Runtime Options</a></li>
|
|
</ul>
|
|
</details></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../perf-analysis.html">Performance Analysis</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Reference</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../reference/troubleshooting.html">Troubleshooting</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../reference/support-matrix.html">Support Matrix</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../reference/precision.html">Numerical Precision</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../reference/ci-overview.html">Continuous Integration Overview</a></li>
|
|
</ul>
|
|
<p aria-level="2" class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
|
<ul class="nav bd-sidenav">
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog1_Pushing_Latency_Boundaries_Optimizing_DeepSeek-R1_Performance_on_NVIDIA_B200_GPUs.html">Pushing Latency Boundaries: Optimizing DeepSeek-R1 Performance on NVIDIA B200 GPUs</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../../blogs/tech_blog/blog2_DeepSeek_R1_MTP_Implementation_and_Optimization.html">DeepSeek R1 MTP Implementation and Optimization</a></li>
|
|
</ul>
|
|
</div>
|
|
</nav></div>
|
|
</div>
|
|
|
|
|
|
<div class="sidebar-primary-items__end sidebar-primary__section">
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
<main id="main-content" class="bd-main" role="main">
|
|
|
|
|
|
<div class="bd-content">
|
|
<div class="bd-article-container">
|
|
|
|
<div class="bd-header-article d-print-none">
|
|
<div class="header-article-items header-article__inner">
|
|
|
|
<div class="header-article-items__start">
|
|
|
|
<div class="header-article-item">
|
|
|
|
<nav aria-label="Breadcrumb" class="d-print-none">
|
|
<ul class="bd-breadcrumbs">
|
|
|
|
<li class="breadcrumb-item breadcrumb-home">
|
|
<a href="../../index.html" class="nav-link" aria-label="Home">
|
|
<i class="fa-solid fa-home"></i>
|
|
</a>
|
|
</li>
|
|
|
|
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Performance Tuning Guide</a></li>
|
|
|
|
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">Useful Runtime Options</span></li>
|
|
</ul>
|
|
</nav>
|
|
</div>
|
|
|
|
</div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
|
|
<div id="searchbox"></div>
|
|
<article class="bd-article">
|
|
|
|
<section id="useful-runtime-options">
|
|
<span id="useful-runtime-flags"></span><h1>Useful Runtime Options<a class="headerlink" href="#useful-runtime-options" title="Link to this heading">#</a></h1>
|
|
<p>This part summarizes the runtime configuration knobs that can be tweaked to
|
|
enhance the performance of already built engines. As compared to previous examples where
|
|
the LLM-API was used to build and save an engine but not to process any requests,
|
|
runtime knobs would be specified when you are using the LLM-API to actually run inference
|
|
like in the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a></p>
|
|
<section id="capacity-scheduler-policy">
|
|
<h2>Capacity Scheduler Policy<a class="headerlink" href="#capacity-scheduler-policy" title="Link to this heading">#</a></h2>
|
|
<p>TensorRT-LLM currently supports three batch scheduler policies: <code class="docutils literal notranslate"><span class="pre">GUARANTEED_NO_EVICT</span></code> (default),
|
|
<code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code> and <code class="docutils literal notranslate"><span class="pre">STATIC_BATCH</span></code>.</p>
|
|
<p>The scheduling policy can be set to <code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code> to pack as many
|
|
requests as possible at each iteration of the forward loop, when in-flight
|
|
sequence batching is enabled. It maximizes the utilization of the GPUs by
|
|
aggressively scheduling requests at the risk of having to pause requests if the
|
|
KV cache size limit is reached.</p>
|
|
<p>For a more conservative approach with respect to the KV cache limitations in
|
|
terms of memory allocation, <code class="docutils literal notranslate"><span class="pre">CapacitySchedulerPolicy</span></code> should be set to
|
|
<code class="docutils literal notranslate"><span class="pre">GUARANTEED_NO_EVICT</span></code> to guarantee that a started request is never paused.</p>
|
|
<p>If the goal is to maximizes the throughput, users should try <code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code>.
|
|
However, they need to keep in mind that it may have a negative impact on
|
|
latency if requests have to be paused.</p>
|
|
<p><code class="docutils literal notranslate"><span class="pre">STATIC_BATCH</span></code> is a legacy mode and is not recommended for production usage.</p>
|
|
<p>To switch the capacity scheduler policy from the default of <code class="docutils literal notranslate"><span class="pre">GUARANTEED_NO_EVICT</span></code> to <code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code>
|
|
you would modify the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a> to be:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
|
|
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">SchedulerConfig</span><span class="p">,</span> <span class="n">CapacitySchedulerPolicy</span>
|
|
|
|
|
|
<span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
|
|
<span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
|
|
<span class="s2">"Hello, I am"</span><span class="p">,</span>
|
|
<span class="s2">"The president of the United States is"</span><span class="p">,</span>
|
|
<span class="s2">"The capital of France is"</span><span class="p">,</span>
|
|
<span class="s2">"The future of AI is"</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
|
|
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">scheduler_config</span> <span class="o">=</span> <span class="n">SchedulerConfig</span><span class="p">(</span>
|
|
<span class="n">capacity_scheduler_policy</span><span class="o">=</span><span class="n">CapacitySchedulerPolicy</span><span class="o">.</span><span class="n">MAX_UTILIZATION</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
|
<span class="n">model</span><span class="o">=</span><span class="s2">"meta-llama/Llama-3.3-70B-Instruct"</span><span class="p">,</span>
|
|
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
|
|
<span class="n">scheduler_config</span><span class="o">=</span><span class="n">scheduler_config</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Print the outputs.</span>
|
|
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
|
|
<span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
|
|
<span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">"</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="n">main</span><span class="p">()</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="context-chunking-policy">
|
|
<h2>Context Chunking Policy<a class="headerlink" href="#context-chunking-policy" title="Link to this heading">#</a></h2>
|
|
<p>As discussed <a class="reference internal" href="tuning-max-batch-size-and-max-num-tokens.html#revisiting-paged-context-attention-and-context-chunking"><span class="std std-ref">previously</span></a> context chunking will increase the chance of batch processing between
|
|
the context and the generation phase, thereby balancing the calculation amount
|
|
of each iteration and typically increasing throughput.</p>
|
|
<p>TensorRT-LLM currently supports two context chunking policies: <code class="docutils literal notranslate"><span class="pre">FIRST_COME_FIRST_SERVED</span></code> (default) which would prioritize scheduling all the context chunks of a request that comes in first,
|
|
and <code class="docutils literal notranslate"><span class="pre">EQUAL_PROGRESS</span></code> which schedules context chunks from all requests before scheduling the next chunk of any request.</p>
|
|
<p><code class="docutils literal notranslate"><span class="pre">FIRST_COME_FIRST_SERVED</span></code> should achieve overall better performance, while
|
|
<code class="docutils literal notranslate"><span class="pre">EQUAL_PROGRESS</span></code> can be helpful in theory to make sure time to first token (TTFT)
|
|
for most requests are relatively similar.</p>
|
|
<p>To switch the context chunking policy from the default of <code class="docutils literal notranslate"><span class="pre">FIRST_COME_FIRST_SERVED</span></code> to <code class="docutils literal notranslate"><span class="pre">EQUAL_PROGRESS</span></code>
|
|
you would modify the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a> to be:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
|
|
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">SchedulerConfig</span><span class="p">,</span> <span class="n">ContextChunkingPolicy</span>
|
|
|
|
|
|
<span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
|
|
<span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
|
|
<span class="s2">"Hello, I am"</span><span class="p">,</span>
|
|
<span class="s2">"The president of the United States is"</span><span class="p">,</span>
|
|
<span class="s2">"The capital of France is"</span><span class="p">,</span>
|
|
<span class="s2">"The future of AI is"</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
|
|
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">scheduler_config</span> <span class="o">=</span> <span class="n">SchedulerConfig</span><span class="p">(</span>
|
|
<span class="n">context_chunking_policy</span><span class="o">=</span><span class="n">ContextChunkingPolicy</span><span class="o">.</span><span class="n">EQUAL_PROGRESS</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
|
<span class="n">model</span><span class="o">=</span><span class="s2">"meta-llama/Llama-3.3-70B-Instruct"</span><span class="p">,</span>
|
|
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
|
|
<span class="n">scheduler_config</span><span class="o">=</span><span class="n">scheduler_config</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Print the outputs.</span>
|
|
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
|
|
<span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
|
|
<span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">"</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="n">main</span><span class="p">()</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction">
|
|
<h2>Max Tokens in Paged KV Cache and KV Cache Free GPU Memory Fraction<a class="headerlink" href="#max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction" title="Link to this heading">#</a></h2>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> and <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code>
|
|
parameters can be used to control the maximum number of tokens handled by the
|
|
KV cache manager. Setting them properly helps better control the amount of
|
|
available memory for the KV cache manager during inference. Keeping in mind
|
|
that increasing the amount of memory available to the KV cache manager tends to
|
|
translate to a higher achievable throughput.</p>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> flag directly sets the maximum number of
|
|
tokens in the KV cache manager. When left unset, that value will be computed
|
|
based on the <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> setting.</p>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> is a floating-point number between <code class="docutils literal notranslate"><span class="pre">0.0</span></code>
|
|
and <code class="docutils literal notranslate"><span class="pre">1.0</span></code> that indicates the maximum fraction of GPU memory (after loading the
|
|
model) that will be used for the KV cache. The default value is <code class="docutils literal notranslate"><span class="pre">0.90</span></code> and
|
|
means that 90% of the free GPU memory will be used to save tokens in the KV
|
|
cache. Based on that value, TensorRT-LLM can determine the maximum number of
|
|
tokens in the KV cache manager.</p>
|
|
<p>When both parameters are set, the maximum number of tokens in the KV cache
|
|
manager will be set to the smaller value between <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code>
|
|
and the value computed from the amount of memory available for the KV cache.</p>
|
|
<p>Unless users clearly know the maximum number of tokens in the KV cache needed
|
|
by the model, it is recommended to leave <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> unset.
|
|
For <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code>, if no other programs are executed on the
|
|
same GPU, it is recommended to test with a as high value as <code class="docutils literal notranslate"><span class="pre">0.95</span></code> to target a
|
|
high throughput. Note that the <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> parameter
|
|
cannot be set to <code class="docutils literal notranslate"><span class="pre">1.0</span></code> because some amount of memory has to be reserved for
|
|
inputs and outputs.</p>
|
|
<p>To set <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> you would modify the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a> to be:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
|
|
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">KvCacheConfig</span>
|
|
|
|
|
|
<span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
|
|
<span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
|
|
<span class="s2">"Hello, I am"</span><span class="p">,</span>
|
|
<span class="s2">"The president of the United States is"</span><span class="p">,</span>
|
|
<span class="s2">"The capital of France is"</span><span class="p">,</span>
|
|
<span class="s2">"The future of AI is"</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
|
|
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">KvCacheConfig</span><span class="p">(</span><span class="n">free_gpu_memory_fraction</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
|
<span class="n">model</span><span class="o">=</span><span class="s2">"meta-llama/Llama-3.3-70B-Instruct"</span><span class="p">,</span>
|
|
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
|
|
<span class="n">kv_cache_config</span><span class="o">=</span><span class="n">kv_cache_config</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Print the outputs.</span>
|
|
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
|
|
<span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
|
|
<span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">"</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="n">main</span><span class="p">()</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>If you wanted to set <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> instead, you would replace <code class="docutils literal notranslate"><span class="pre">free_gpu_memory_fraction</span></code> with <code class="docutils literal notranslate"><span class="pre">max_tokens</span></code> and specify the number.</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">KvCacheConfig</span><span class="p">(</span><span class="n">max_tokens</span><span class="o">=<</span><span class="n">number</span> <span class="n">of</span> <span class="n">tokens</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="maximum-attention-window-size">
|
|
<h2>Maximum Attention Window Size<a class="headerlink" href="#maximum-attention-window-size" title="Link to this heading">#</a></h2>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> flag sets the maximum number of tokens that are
|
|
attended to in order to generate one token when using techniques like sliding window
|
|
attention. See this
|
|
<a class="reference internal" href="../../advanced/gpt-attention.html#sliding-window-attention-cyclic-rolling-buffer-kv-cache"><span class="std std-ref">Document</span></a>
|
|
for more details. It defaults to the maximum sequence length
|
|
(<code class="docutils literal notranslate"><span class="pre">max_seq_len</span></code> when building the engine), which means
|
|
that the feature is disabled by default.</p>
|
|
<p>When set to a smaller value than <code class="docutils literal notranslate"><span class="pre">max_seq_len</span></code> (during
|
|
engine build), only the KV cache of the last <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> tokens
|
|
will be stored. If the input sequence length at runtime exceeds the
|
|
<code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> value, the accuracy may start dropping, but the
|
|
runtime performance will be better (due to the reduction in terms of
|
|
computations and GPU memory allocation). Users can modify that value to
|
|
increase runtime performance at the expense of reduced accuracy.</p>
|
|
<p>Just like <a class="reference internal" href="#max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction"><span class="std std-ref"><code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code></span></a>, <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> can be specified in the LLM-API
|
|
via <code class="docutils literal notranslate"><span class="pre">KVCacheConfig</span></code>. To specify <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> you would instantiate <code class="docutils literal notranslate"><span class="pre">KVCacheConfig</span></code> like so</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">KvCacheConfig</span><span class="p">(</span><span class="n">max_attention_window</span><span class="o">=<</span><span class="n">number</span> <span class="n">of</span> <span class="n">tokens</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
</section>
|
|
|
|
|
|
</article>
|
|
|
|
|
|
|
|
|
|
|
|
<footer class="prev-next-footer d-print-none">
|
|
|
|
<div class="prev-next-area">
|
|
<a class="left-prev"
|
|
href="fp8-quantization.html"
|
|
title="previous page">
|
|
<i class="fa-solid fa-angle-left"></i>
|
|
<div class="prev-next-info">
|
|
<p class="prev-next-subtitle">previous</p>
|
|
<p class="prev-next-title">FP8 Quantization</p>
|
|
</div>
|
|
</a>
|
|
<a class="right-next"
|
|
href="../perf-analysis.html"
|
|
title="next page">
|
|
<div class="prev-next-info">
|
|
<p class="prev-next-subtitle">next</p>
|
|
<p class="prev-next-title">Performance Analysis</p>
|
|
</div>
|
|
<i class="fa-solid fa-angle-right"></i>
|
|
</a>
|
|
</div>
|
|
</footer>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
|
|
|
|
<dialog id="pst-secondary-sidebar-modal"></dialog>
|
|
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
|
|
|
|
|
|
<div class="sidebar-secondary-item">
|
|
<div
|
|
id="pst-page-navigation-heading-2"
|
|
class="page-toc tocsection onthispage">
|
|
<i class="fa-solid fa-list"></i> On this page
|
|
</div>
|
|
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
|
|
<ul class="visible nav section-nav flex-column">
|
|
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#capacity-scheduler-policy">Capacity Scheduler Policy</a></li>
|
|
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#context-chunking-policy">Context Chunking Policy</a></li>
|
|
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction">Max Tokens in Paged KV Cache and KV Cache Free GPU Memory Fraction</a></li>
|
|
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#maximum-attention-window-size">Maximum Attention Window Size</a></li>
|
|
</ul>
|
|
</nav></div>
|
|
|
|
</div></div>
|
|
|
|
|
|
|
|
</div>
|
|
<footer class="bd-footer-content">
|
|
|
|
</footer>
|
|
|
|
</main>
|
|
</div>
|
|
</div>
|
|
|
|
<!-- Scripts loaded after <body> so the DOM is not blocked -->
|
|
<script defer src="../../_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
|
|
<script defer src="../../_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
|
|
|
|
<footer class="bd-footer">
|
|
<div class="bd-footer__inner bd-page-width">
|
|
|
|
<div class="footer-items__start">
|
|
|
|
<div class="footer-item">
|
|
<a class="footer-brand logo" href="https://www.nvidia.com">
|
|
<img src="../../_static/nvidia-logo-horiz-rgb-1c-blk-for-screen.svg" class="logo__image only-light" alt="NVIDIA"/>
|
|
<img src="../../_static/nvidia-logo-horiz-rgb-1c-wht-for-screen.svg" class="logo__image only-dark" alt="NVIDIA"/>
|
|
</a></div>
|
|
|
|
<div class="footer-item">
|
|
|
|
<div class="footer-links">
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/">Privacy Policy</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/">Manage My Privacy</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/preferences/start/">Do Not Sell or Share My Data</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/">Terms of Service</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/">Accessibility</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/">Corporate Policies</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/product-security/">Product Security</a>
|
|
|
|
|
|
|
|
|
|
|
<a class="external" href="https://www.nvidia.com/en-us/contact/">Contact</a>
|
|
|
|
|
|
|
|
</div>
|
|
</div>
|
|
|
|
<div class="footer-item">
|
|
|
|
|
|
|
|
|
|
<p class="copyright">
|
|
|
|
Copyright © 2025, NVidia.
|
|
<br/>
|
|
|
|
</p>
|
|
</div>
|
|
|
|
<div class="footer-item">
|
|
<div class="extra_footer">
|
|
|
|
<p>Last updated on June 16, 2025.</p>
|
|
|
|
<p>This page is generated by TensorRT-LLM commit <a href="https://github.com/NVIDIA/TensorRT-LLM/tree/8445416">8445416</a>.</p>
|
|
|
|
</div></div>
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</div>
|
|
|
|
</footer>
|
|
</body>
|
|
</html> |