TensorRT-LLMs/tests/integration/defs/common.py
JunyiXu-nv b210f22c7e
[https://nvbugs/5703953][fix] Preserving ip:port for trtllm-serve before initializing llm (#9646)
Signed-off-by: Junyi Xu <219237550+JunyiXu-nv@users.noreply.github.com>
2025-12-06 20:13:48 -08:00

1192 lines
41 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import platform
import re
import socket
import tempfile
import time
from difflib import SequenceMatcher
from pathlib import Path
from typing import Any
import yaml
from packaging import version
from tensorrt_llm import LLM as LLM_torch
from tensorrt_llm._utils import get_free_port
from tensorrt_llm.executor.request import LoRARequest
from tensorrt_llm.lora_manager import LoraConfig
from tensorrt_llm.sampling_params import SamplingParams
from .trt_test_alternative import check_call, check_output, exists, is_windows
def venv_check_call(venv, cmd, env=None, **kwargs):
def _war_check_call(*args, **kwargs):
kwargs["cwd"] = venv.get_working_directory()
return check_call(*args, **kwargs)
venv.run_cmd(cmd, caller=_war_check_call, env=env, **kwargs)
def venv_check_output(venv, cmd, env=None, **kwargs):
def _war_check_output(*args, **kwargs):
kwargs["cwd"] = venv.get_working_directory()
output = check_output(*args, **kwargs)
return output
return venv.run_cmd(cmd, caller=_war_check_output, env=env, **kwargs)
def venv_mpi_check_call(venv, mpi_cmd, python_cmd, **kwargs):
"""
This function WAR check_call() to run python_cmd with mpi.
If mpi_cmd = ["mpirun", "-n", "2"] and python_cmd = ["run.py"], the command will be:
"mpirun -n 2 <venv python> run.py"
"""
def _war_check_call(*args, **kwargs):
assert len(args) == 1, "bad args"
arg_list, = args
merged_cmd = copy.deepcopy(mpi_cmd)
merged_cmd.extend(arg_list)
kwargs["cwd"] = venv.get_working_directory()
return check_call(merged_cmd, **kwargs)
venv.run_cmd(python_cmd, caller=_war_check_call, **kwargs)
def venv_mpi_check_output(venv, mpi_cmd, python_cmd, env=None, **kwargs):
"""
This function WAR check_output() to run python_cmd with mpi.
If mpi_cmd = ["mpirun", "-n", "2"] and python_cmd = ["run.py"], the command will be:
"mpirun -n 2 <venv python> run.py"
"""
def _war_check_output(*args, **kwargs):
assert len(args) == 1, "bad args"
arg_list, = args
merged_cmd = copy.deepcopy(mpi_cmd)
merged_cmd.extend(arg_list)
kwargs["cwd"] = venv.get_working_directory()
return check_output(merged_cmd, **kwargs)
return venv.run_cmd(python_cmd, caller=_war_check_output, env=env, **kwargs)
def parse_mpi_cmd(cmd):
if platform.system() == "Windows":
# Simply fetch necessary args from Linux cmd then fill Windows cmd because:
# 1. We use Microsoft MPI on Windows, while Open-MPI on Linux. Args are not compatible.
# 2. Multi-GPU is actually not supported on Windows for now.
flags = ("-n", "-np")
# append None if not found
indices = [idx for idx in range(len(cmd)) if cmd[idx] in flags] + [
None,
]
index = indices[0]
return ["mpiexec", cmd[index], cmd[index + 1]] if index else cmd
else:
return cmd
class PluginOptions:
def __init__(self,
gpt_attention: str = None,
bert_attention: str = None,
gemm: str = None,
layernorm: str = None):
self.gpt_attention = gpt_attention
self.bert_attention = bert_attention
self.gemm = gemm
def to_legacy_args(self):
args = []
if self.gpt_attention is not None:
args.extend(["--use_gpt_attention_plugin", self.gpt_attention])
if self.bert_attention is not None:
args.extend(["--use_bert_attention_plugin", self.bert_attention])
if self.gemm is not None:
args.extend(["--use_gemm_plugin", self.gemm])
return args
def to_args(self):
args = []
if self.gpt_attention is not None:
args.extend(["--gpt_attention_plugin", self.gpt_attention])
else:
args.extend(["--gpt_attention_plugin", "disable"])
if self.bert_attention is not None:
args.extend(["--bert_attention_plugin", self.bert_attention])
else:
args.extend(["--bert_attention_plugin", "disable"])
if self.gemm is not None:
args.extend(["--gemm_plugin", self.gemm])
else:
args.extend(["--gemm_plugin", "disable"])
return args
def prune_checkpoint(llm_venv, checkpoint_dir):
pruned_checkpoint_dir = checkpoint_dir + ".pruned"
prune_cmd = [
"trtllm-prune", f"--checkpoint_dir={checkpoint_dir}",
f"--out_dir={pruned_checkpoint_dir}"
]
check_call(" ".join(prune_cmd), shell=True, env=llm_venv._new_env)
return pruned_checkpoint_dir
def refit_model(llm_venv, engine_dir, unpruned_model_dir):
refit_engine_dir = f"{engine_dir}_refit_full"
refit_cmd = [
"trtllm-refit", f"--checkpoint_dir={unpruned_model_dir}",
f"--engine_dir {engine_dir}", f"--output_dir {refit_engine_dir}"
]
check_call(" ".join(refit_cmd), shell=True, env=llm_venv._new_env)
return refit_engine_dir
def convert_weights(llm_venv,
example_root,
cmodel_dir,
model,
model_path,
quant_ckpt_path=None,
data_type="float16",
gpus=1,
tp_size=None,
pp_size=None,
model_type=None,
use_parallel_embedding=False,
embedding_sharding_dim=0,
load_by_shard=False,
int8_kv_cache=False,
use_weight_only=False,
workers=1,
processes=None,
smoothquant=0,
per_channel=False,
per_token=False,
fp8_kv_cache=False,
enable_fp8=False,
weight_only_precision=None,
per_group=False,
batch_size=8,
multimodal=False,
ckpt_type='hf',
load_model_on_cpu=False,
**kwargs):
"Convert weights from HF transformers format to FT format"
converted_model_path = os.path.join(cmodel_dir, model, data_type)
script = "convert_checkpoint.py"
tp_size = gpus if tp_size is None else tp_size
pp_size = gpus // tp_size if pp_size is None else pp_size
gpus = tp_size * pp_size
model_dir = f'{converted_model_path}/{gpus}-gpu'
# TODO: add other models command
if "gpt2" in model:
script = "convert_checkpoint.py"
convert_cmd = [
f"{example_root}/{script}", f"--output_dir={model_dir}",
f"--dtype={data_type}", f"--tp_size={tp_size}",
f"--pp_size={pp_size}"
]
if "next" in model:
convert_cmd.extend(["--nemo_ckpt_path", model_path])
else:
convert_cmd.extend(["--model_dir", model_path])
if "smooth" in model:
convert_cmd.extend(["--smoothquant", "0.5"])
if "kv" in model and "int8" in model:
convert_cmd.append("--int8_kv_cache")
elif "t5" in model or "bart" in model or "ul2" in model or "wmt" in model or "nougat" in model or 'pix2struct' in model:
assert model_type, "Encoder-Decoder models must specify model architecture type"
script = "convert_checkpoint.py"
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", converted_model_path, f"--model_type={model_type}",
f"--tp_size={tp_size}", f"--pp_size={pp_size}",
f"--dtype={data_type}"
]
if "nougat" in model:
convert_cmd.append("--nougat")
model_dir = converted_model_path
elif "opt" in model and model_type == "blip2":
convert_cmd = [
f"{example_root}/{script}",
f"--model_dir={model_path}",
f"--output_dir={model_dir}",
f"--model_type={model_type}",
f"--dtype={data_type}",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
]
elif "whisper" in model_path:
script = "convert_checkpoint.py"
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", converted_model_path
]
model_dir = converted_model_path
elif "mamba" in model:
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", model_dir, f"--dtype={data_type}",
f"--tp_size={tp_size}"
]
elif "llama" in model or "llava" in model or "vila" in model:
convert_cmd = [
f"{example_root}/{script}", "--output_dir", model_dir,
f"--dtype={data_type}", f"--tp_size={tp_size}",
f"--pp_size={pp_size}"
]
if 'meta-ckpt' in model:
convert_cmd.extend(['--meta_ckpt_dir', model_path])
else:
convert_cmd.extend(['--model_dir', model_path])
if 'code_llama_1gpu' in model:
convert_cmd.extend(['--rotary_base=1000000'])
convert_cmd.extend(['--vocab_size=32016'])
elif 'code_llama' in model:
convert_cmd.extend(['--rotary_base=1000000'])
convert_cmd.extend(['--vocab_size=32000'])
if 'int4_gptq' in model:
convert_cmd.extend([
"--use_weight_only", "--weight_only_precision=int4_gptq",
f"--quant_ckpt_path={quant_ckpt_path}", "--per_group"
])
if 'int8_gptq' in model:
convert_cmd.extend([
"--use_weight_only", "--weight_only_precision=int8_gptq",
f"--quant_ckpt_path={quant_ckpt_path}", "--per_group",
"--group_size=64"
])
if 'awq' in model:
convert_cmd.extend([
"--use_weight_only", "--weight_only_precision=int4_awq",
"--group_size=128"
])
if 'hf_fp8' in model:
convert_cmd.extend(["--use_fp8"])
elif "draft_target_model" in model:
if "gpt" in model_path:
example_name = "gpt"
elif "llama" in model_path:
example_name = "llama"
script = f"{example_root}/../models/core/{example_name}/convert_checkpoint.py"
convert_cmd = [
f"{script}",
"--model_dir",
model_path,
"--output_dir",
model_dir,
f"--dtype={data_type}",
]
elif "ngram" in model:
if "gpt" in model_path:
example_name = "gpt"
elif "llama" in model_path:
example_name = "llama"
script = f"{example_root}/../models/core/{example_name}/convert_checkpoint.py"
convert_cmd = [
f"{script}",
"--model_dir",
model_path,
"--output_dir",
model_dir,
f"--dtype={data_type}",
]
elif "medusa" in model:
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path[0],
"--medusa_model_dir", model_path[1], "--output_dir", model_dir,
f"--dtype={data_type}", f"--tp_size={tp_size}",
f"--pp_size={pp_size}", "--num_medusa_heads=4"
]
elif "redrafter" in model:
redrafter_num_beams = kwargs.pop("redrafter_num_beams")
redrafter_draft_len_per_beam = kwargs.pop(
"redrafter_draft_len_per_beam")
convert_cmd = [
f"{example_root}/{script}", "--base_model_checkpoint_dir",
model_path[0], "--drafter_model_dir", model_path[1], "--output_dir",
model_dir, f"--dtype={data_type}", f"--tp_size={tp_size}",
f"--redrafter_num_beams={redrafter_num_beams}",
f"--redrafter_draft_len_per_beam={redrafter_draft_len_per_beam}"
]
elif "eagle" in model:
if len(model_path) == 2:
# Test the checkpoint released from HF, which requires two separate weights,
# one for the base model and one for the EagleNets.
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path[0],
"--eagle_model_dir", model_path[1], "--output_dir", model_dir,
f"--dtype={data_type}", f"--tp_size={tp_size}",
f"--pp_size={pp_size}", "--num_eagle_layers=4",
"--max_draft_len=63", "--max_non_leaves_per_layer=10"
]
else:
# Test the checkpoint released from ModelOpt, which only requires one weight,
# which includes both the base model and EagleNets, and is an FP8 datatype.
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", model_dir, f"--dtype={data_type}",
f"--tp_size={tp_size}", f"--pp_size={pp_size}",
"--num_eagle_layers=4", "--max_draft_len=63",
"--max_non_leaves_per_layer=10"
]
elif "recurrentgemma" in model:
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", model_dir, f"--dtype={data_type}",
f"--world_size={tp_size}", f"--ckpt_type={ckpt_type}"
]
elif "cogvlm" in model:
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", model_dir, f"--dtype={data_type}",
f"--tp_size={tp_size}", f"--pp_size={pp_size}",
"--use_prompt_tuning"
]
elif "fuyu" in model or "kosmos" in model:
gpt_variant = "kosmos-2" if "kosmos" in model else "persimmon"
convert_cmd = [
f"{example_root}/{script}", "--model_dir", model_path,
"--output_dir", model_dir, "--dtype", data_type, "--gpt_variant",
gpt_variant
]
elif "neva-22b" in model:
convert_cmd = [
f"{example_root}/{script}", "--nemo_ckpt_path", model_path,
"--output_dir", model_dir, "--dtype", data_type,
"--nemo_rename_key", "model:model.language_model",
"attention.linear_qkv.layer_norm_bias:input_layernorm.bias",
"attention.linear_qkv.layer_norm_weight:input_layernorm.weight",
"mlp.linear_fc1.layer_norm_bias:post_attention_layernorm.bias",
"mlp.linear_fc1.layer_norm_weight:post_attention_layernorm.weight",
"linear_qkv:query_key_value", "linear_fc1:dense_h_to_4h",
"linear_fc2:dense_4h_to_h", "linear_proj:dense", "decoder:encoder"
]
elif "video-neva" in model:
nemotron_root = os.path.join(example_root, "../", "nemotron")
if llm_venv:
# Install Python requirements for nemotron
llm_venv.run_cmd([
"-m", "pip", "install", "-r",
os.path.join(nemotron_root, "requirements.txt")
])
qformat = 'full_prec'
model_name = 'nemotron-video-neva'
converted_model_path = os.path.join(cmodel_dir, model_name, qformat)
model_dir = f'{converted_model_path}/{gpus}-gpu'
# Overwrite the model_path with the nemotron model path
model_path = os.path.join(os.path.dirname(os.path.dirname(model_path)),
'nemotron', 'Nemotron-4-15B-SteerLM.nemo')
convert_cmd = [
f"{example_root}/../quantization/quantize.py",
f"--nemo_ckpt_path={model_path}",
"--batch_size=64",
f"--dtype={data_type}",
f"--qformat={qformat}",
f"--output_dir={model_dir}",
]
elif "dit-xl" in model.lower():
convert_cmd = [
f"{example_root}/{script}",
f"--timm_ckpt={model_path}",
f"--output_dir={model_dir}",
f"--dtype={data_type}",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
]
if kwargs.get("enable_fp8_linear") is not None:
convert_cmd.append("--fp8_linear")
elif "stdit" in model.lower():
convert_cmd = [
f"{example_root}/{script}",
f"--timm_ckpt={model_path}/model.safetensors",
f"--output_dir={model_dir}",
f"--dtype={data_type}",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
]
elif "bert" in model.lower():
convert_cmd = [
f"{example_root}/{script}",
f"--model={model}",
f"--model_dir={model_path}",
f"--output_dir={model_dir}",
f"--dtype={data_type}",
f"--tp_size={tp_size}",
]
elif "granite" in model.lower():
convert_cmd = [
f"{example_root}/{script}",
f"--model_dir={model_path}",
f"--output_dir={model_dir}",
f"--dtype={data_type}",
f"--tp_size={tp_size}",
]
elif "stable-diffusion-3.5" in model.lower():
convert_cmd = [
f"{example_root}/{script}",
f"--model_path={model_path}",
f"--output_dir={model_dir}",
f"--tp_size={tp_size}",
]
else:
convert_cmd = [
f"{example_root}/{script}",
f"--model_dir={model_path}",
f"--output_dir={model_dir}",
f"--dtype={data_type}",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
]
if use_parallel_embedding:
convert_cmd.append("--use_parallel_embedding")
convert_cmd.append(f"--embedding_sharding_dim={embedding_sharding_dim}")
if load_by_shard:
convert_cmd.extend(["--load_by_shard"])
if load_model_on_cpu:
convert_cmd.extend(["--load_model_on_cpu"])
if workers > 1:
convert_cmd.extend([f"--workers={workers}"])
if int8_kv_cache:
convert_cmd.append("--int8_kv_cache")
if use_weight_only:
convert_cmd.append("--use_weight_only")
if weight_only_precision:
convert_cmd.append(f"--weight_only_precision={weight_only_precision}")
if processes is not None:
convert_cmd.append(f"--processes={processes}")
if smoothquant > 0:
convert_cmd.append(f"--smoothquant={smoothquant}")
if per_channel:
convert_cmd.append("--per_channel")
if per_token:
convert_cmd.append("--per_token")
if enable_fp8:
convert_cmd.append('--enable_fp8')
if fp8_kv_cache:
convert_cmd.append('--fp8_kv_cache')
if quant_ckpt_path:
convert_cmd.append(f"--quant_ckpt_path={quant_ckpt_path}")
if per_group:
convert_cmd.append("--per_group")
timeout = kwargs.pop('timeout', None)
for key, value in kwargs.items():
if isinstance(value, bool):
if value:
convert_cmd.append(f"--{key}")
else:
convert_cmd.extend([f"--{key}={value}"])
if llm_venv:
venv_check_call(llm_venv, convert_cmd, timeout=timeout)
return model_dir
else:
return convert_cmd, model_dir
def similarity_score(a, b):
"similar compare a and b "
return SequenceMatcher(None, a, b).ratio()
def similar(a, b, threshold=0.8):
"similar compare a and b "
return similarity_score(a, b) >= threshold
def generate_summary_cmd(example_root, *args, **kwargs):
"generate summary command"
summarize_script = f"{example_root}/../../../summarize.py" if "core" in example_root else f"{example_root}/../summarize.py"
summary_cmd = [summarize_script, "--test_trt_llm", "--check_accuracy"]
for key, value in kwargs.items():
if isinstance(value, bool):
if value:
summary_cmd.append(f"--{key}")
elif isinstance(value, list): # Support max_attention_window
summary_cmd.extend([f"--{key}", *map(str, value)])
else:
summary_cmd.extend([f"--{key}", f"{value}"])
for arg in args:
summary_cmd.append(f"--{arg}")
return summary_cmd
def generate_deterministic_cmd(example_root, *args, **kwargs):
"generate deterministic command"
deterministic_cmd = [
f"{example_root}/mixtral_deterministic.py",
"--check_deterministic_accuracy"
]
for key, value in kwargs.items():
if isinstance(value, bool):
if value:
deterministic_cmd.extend(f"--{key}")
else:
deterministic_cmd.extend([f"--{key}", f"{value}"])
for arg in args:
deterministic_cmd.append(f"--{arg}")
return deterministic_cmd
def quantize_data(llm_venv,
example_root,
model_dir,
dtype,
quantize_dir,
qformat="full_prec",
tp_size=1,
pp_size=1,
cp_size=1,
calib_size=512,
kv_cache_dtype=None,
**kwargs):
"quanize data and return data dir"
model_name = os.path.basename(model_dir)
output_dir = os.path.join(quantize_dir, model_name, dtype, qformat,
f"tp{tp_size}pp{pp_size}")
if kv_cache_dtype:
output_dir = os.path.join(output_dir, kv_cache_dtype)
else:
output_dir = os.path.join(output_dir, "no_kv_cache")
quantize_script = f"{example_root}/../../../quantization/quantize.py" if "core" in example_root else f"{example_root}/../quantization/quantize.py"
quantize_cmd = [
quantize_script,
f"--model_dir={model_dir}",
f"--dtype={dtype}",
f"--qformat={qformat}",
f"--output_dir={output_dir}",
f"--tp_size={tp_size}",
f"--pp_size={pp_size}",
f"--cp_size={cp_size}",
f"--calib_size={calib_size}",
]
if kv_cache_dtype:
quantize_cmd.append(f"--kv_cache_dtype={kv_cache_dtype}")
timeout = kwargs.pop('timeout', None)
for key, value in kwargs.items():
if isinstance(value, bool):
if value:
quantize_cmd.append(f"--{key}")
else:
quantize_cmd.extend([f"--{key}", f"{value}"])
if llm_venv:
if not exists(output_dir):
venv_check_call(llm_venv, quantize_cmd, timeout=timeout)
return output_dir
else:
return quantize_cmd, output_dir
def find_tensorrt(ld_library_path):
MAX_SEARCH_HEIGHT = 10
ld_library_path = ld_library_path.split(os.pathsep)
for trt_lib_dir in ld_library_path:
trt_lib_dir = Path(trt_lib_dir)
trt_nvinfer_lib = trt_lib_dir / "libnvinfer.so"
if trt_nvinfer_lib.exists():
trt_root_dir = trt_lib_dir
for i in range(MAX_SEARCH_HEIGHT):
trt_root_dir = trt_root_dir.parent
trt_include_dir = trt_root_dir / "include"
trt_nvinfer_header = trt_include_dir / "NvInfer.h"
if trt_nvinfer_header.exists():
return str(trt_include_dir), str(trt_lib_dir)
return None, None
def get_trt_llm_lib_dir(venv):
output = venv.run_raw(
"import tensorrt_llm; print(f'{tensorrt_llm.__path__[0]}/libs')",
caller=check_output).strip()
if "TensorRT LLM version: " in output:
output = output.split('\n')[-1]
return output.strip()
def trt_gte(venv, major: int, minor: int = 0):
"""
Check if TRT version is greater than or equal to major.minor
"""
ver = venv.run_output("import tensorrt;print(tensorrt.__version__)")
trt_ver = version.parse(ver)
return trt_ver.major >= major and trt_ver.minor >= minor
def parse_output(text):
"parse output"
results = []
text_lists = re.split(r"Input \[Text \d\]:", text)
for item in text_lists:
item = item.replace(os.linesep, "")
while True:
match = re.search(
r"(Output \[Text \d+ Beam \d+\]: \"(.*?)\")(Output|Input|$)",
item, re.MULTILINE)
if match is None:
break
_, end = match.span(1)
results.append(match.group(2))
item = item[end:]
return results
def run_and_check(llm_venv, run_cmd, valid_outputs, streaming=False):
print("Running inference...")
output = venv_check_output(llm_venv, run_cmd)
if not streaming:
output = parse_output(output)[0]
assert any([
similar(output, expect, threshold=0.95) for expect in valid_outputs
]), f"output is: {output}"
else:
# Fetch all outputs and expect a monotonically increasing similarity
similarities = []
for suboutput in parse_output(output):
similarities.append(
max([
similarity_score(suboutput, expect)
for expect in valid_outputs
]))
assert (
all(x <= y for x, y in zip(similarities, similarities[1:]))
), f"streaming outputs must have a monotonically increasing similarity score. similarities: {similarities}"
output = parse_output(output)[-1]
assert any([
similar(output, expect, threshold=0.95) for expect in valid_outputs
]), f"output is: {output}"
def get_cpp_benchmark(cpp_benchmark_name, llm_root):
suffix = ".exe" if is_windows() else ""
cpp_benchmark_name += suffix
# In CI/CD, we copy the cpp binary into the same folder as cpp to avoid package sanity
ci_path = os.path.join(os.path.dirname(os.path.realpath(llm_root)),
"benchmarks", "cpp", cpp_benchmark_name)
if os.path.exists(ci_path):
return ci_path
# In QA, we keep the benchmark build at its original location
qa_path = os.path.join(llm_root, "cpp", "build", "benchmarks",
cpp_benchmark_name)
if os.path.exists(qa_path):
return qa_path
raise Exception(
f"Cannot find cpp benchmark binary in either {ci_path} or {qa_path}. Did you forget --benchmark in building TRT-LLM?"
)
def generate_dummy_loras(
hf_model_dir,
lora_output_dir,
num_loras=1,
lora_rank=8,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
zero_weights=False):
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM
print("Creating pseudo LoRAs...")
# Avoid meta tensors by loading model to CPU first (ensures all parameters are materialized)
try:
model = AutoModelForCausalLM.from_pretrained(
hf_model_dir,
dtype=torch.float16,
device_map=None, # Load everything to CPU first
trust_remote_code=True,
low_cpu_mem_usage=False,
)
except Exception:
# Fallback to auto device mapping if CPU loading fails
print(
"Warning: Loading model to CPU failed, falling back to auto device mapping"
)
model = AutoModelForCausalLM.from_pretrained(
hf_model_dir,
dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
lora_config = LoraConfig(r=lora_rank,
target_modules=target_modules,
bias="none",
task_type="CAUSAL_LM")
lora_output_paths = []
for lora_idx in range(num_loras):
lora_model = get_peft_model(model, lora_config)
if zero_weights:
for param in lora_model.parameters():
param.data.zero_()
pseudo_lora_dir = f"{lora_output_dir}/pseudo_lora_{lora_idx}"
lora_model.save_pretrained(pseudo_lora_dir)
lora_output_paths.append(pseudo_lora_dir)
return lora_output_paths
def get_test_prompts(use_code_prompts: bool = False) -> list[str]:
"""Get test prompts for LoRA testing.
Args:
use_code_prompts: If True, return code-related prompts. If False, return general prompts.
Returns:
List of test prompts.
"""
if use_code_prompts:
return [
"Write a function that outputs the fibonacci sequence.",
"Convert the following C++ code to Python: x = 0;x++;",
"Find the largest prime factor of 42.",
"write a unit test for this function: $(cat fib.py)",
"# A simple python function to remove whitespace from a string:",
"How to load CodeLlama from HuggingFace?",
]
else:
return [
"Hey how are you doing today?",
"How is the weather in Seattle, WA?",
"Is it ok to fill diesel in a petrol car?",
"Can you check the top 5 trending songs on spotify?",
"What is the capital of France?",
"How to load CodeLlama from HuggingFace?",
]
def get_test_prompts_for_torch() -> list[str]:
"""Get test prompts for LoRA Torch testing.
Returns:
List of test prompts.
"""
return [
"Hey how are you doing today?",
"How is the weather in Seattle, WA?",
"Is it ok to fill diesel in a petrol car?",
"Can you check the top 5 trending songs on spotify?",
"What is the capital of France?",
]
def test_multi_lora_support(
hf_model_dir,
tllm_ckpt_dir,
engine_dir,
llm_venv,
example_root,
num_loras=2,
lora_rank=8,
target_hf_modules=["q_proj", "k_proj", "v_proj"],
target_trtllm_modules=["attn_q", "attn_k", "attn_v"],
zero_lora_weights=True,
use_code_prompts=False,
):
start_time = time.time()
print("Creating dummy LoRAs...")
lora_start = time.time()
lora_paths = generate_dummy_loras(
hf_model_dir=hf_model_dir,
lora_output_dir=llm_venv.get_working_directory(),
num_loras=num_loras,
lora_rank=lora_rank,
target_modules=target_hf_modules,
zero_weights=zero_lora_weights)
lora_end = time.time()
print(
f"Creating dummy LoRAs completed in {(lora_end - lora_start):.2f} seconds."
)
print("Build engines...")
build_start = time.time()
build_cmd = [
"trtllm-build",
f"--checkpoint_dir={tllm_ckpt_dir}",
f"--output_dir={engine_dir}",
"--remove_input_padding=enable",
"--context_fmha=enable",
"--gemm_plugin=auto",
"--lora_plugin=auto",
"--max_batch_size=8",
"--max_input_len=512",
"--max_seq_len=562",
"--lora_dir",
f"{lora_paths[0]}",
f"{lora_paths[1]}",
"--max_lora_rank=8",
"--lora_target_modules",
*target_trtllm_modules,
"--max_beam_width=1",
]
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
build_end = time.time()
print(
f"Build engines completed in {(build_end - build_start):.2f} seconds.")
input_prompts = get_test_prompts(use_code_prompts)
print("Run inference with C++ runtime with pybind...")
inference_start = time.time()
run_script = f"{example_root}/../../../run.py" if "core" in example_root else f"{example_root}/../run.py"
run_cmd = [
run_script,
f"--tokenizer_dir={hf_model_dir}",
f"--engine_dir={engine_dir}",
"--input_text",
*input_prompts,
"--lora_task_uids",
"-1",
"0",
"1",
"-1",
"0",
"1",
"--top_p=0.5",
"--top_k=0",
"--random_seed=0",
"--max_output_len=30",
]
venv_check_call(llm_venv, run_cmd)
inference_end = time.time()
print(
f"Inference completed in {(inference_end - inference_start):.2f} seconds."
)
total_time = time.time() - start_time
print(
f"Total test_multi_lora_support execution time: {total_time:.2f} seconds"
)
def test_llm_torch_multi_lora_support(
hf_model_dir,
llm_venv,
num_loras=2,
lora_rank=8,
target_hf_modules=["q_proj", "k_proj", "v_proj"],
target_trtllm_modules=["attn_q", "attn_k", "attn_v"],
zero_lora_weights=True,
tensor_parallel_size=1,
pipeline_parallel_size=1,
expected_outputs=None):
"""Test multi-LoRA support with LLM-API Torch backend."""
# if expected_outputs is None:
# raise ValueError("expected_outputs must be provided for exact validation")
start_time = time.time()
print("Creating dummy LoRAs...")
lora_start = time.time()
lora_paths = generate_dummy_loras(
hf_model_dir=hf_model_dir,
lora_output_dir=llm_venv.get_working_directory(),
num_loras=num_loras,
lora_rank=lora_rank,
target_modules=target_hf_modules,
zero_weights=zero_lora_weights)
lora_end = time.time()
print(
f"Creating dummy LoRAs completed in {(lora_end - lora_start):.2f} seconds."
)
print("Initializing LLM_torch with LoRA support...")
init_start = time.time()
lora_config = LoraConfig(lora_dir=lora_paths,
max_lora_rank=lora_rank,
max_loras=num_loras,
max_cpu_loras=num_loras,
lora_target_modules=target_trtllm_modules)
input_prompts = get_test_prompts_for_torch()
with LLM_torch(
model=hf_model_dir,
lora_config=lora_config,
tensor_parallel_size=tensor_parallel_size,
pipeline_parallel_size=pipeline_parallel_size,
dtype="bfloat16",
max_batch_size=8, # From original test
max_input_len=512, # From original test
max_seq_len=562, # From original test
max_beam_width=1 # From original test
) as llm:
init_end = time.time()
print(
f"LLM_torch initialization completed in {(init_end - init_start):.2f} seconds."
)
print("Running inference with LLM-API Torch backend...")
inference_start = time.time()
# Create LoRA requests for different adapters
lora_requests = []
for i in range(len(input_prompts)):
if i % 2 == 1: # Add some requests without LoRA
lora_requests.append(None)
else: # With LoRA
lora_requests.append(
LoRARequest(f"lora-{i}", i,
lora_paths[i % len(lora_paths)]))
sampling_params = SamplingParams(max_tokens=30,
top_p=0.5,
top_k=0,
temperature=0.0)
outputs = llm.generate(input_prompts,
sampling_params=sampling_params,
lora_request=lora_requests)
inference_end = time.time()
print(
f"Inference completed in {(inference_end - inference_start):.2f} seconds."
)
# Validate exact outputs
print("Validating exact outputs...")
assert len(outputs) == len(expected_outputs), \
f"Expected {len(expected_outputs)} outputs, got {len(outputs)}"
for i, (output, expected) in enumerate(zip(outputs, expected_outputs)):
actual_text = output.outputs[0].text
print(f"Prompt {i+1}: {input_prompts[i]}")
print(
f"LoRA: {lora_requests[i].lora_int_id if lora_requests[i] else 'None'}"
)
print(f"Expected: {expected}")
print(f"Actual: {actual_text}")
print("-" * 50)
# Exact string comparison
assert actual_text == expected, \
f"Output {i+1} mismatch:\nExpected: {expected!r}\nActual: {actual_text!r}"
total_time = time.time() - start_time
print(f"Total test execution time: {total_time:.2f} seconds")
def get_dummy_spec_decoding_heads(hf_model_dir,
save_dir,
mode='medusa',
num_heads=4,
num_layers=1):
import os
import modelopt.torch.opt as mto
import modelopt.torch.speculative as mtsp
import transformers
from modelopt.torch.export import export_hf_checkpoint
# Create the base model.
model = transformers.AutoModelForCausalLM.from_pretrained(
hf_model_dir, trust_remote_code=True)
if mode == "medusa":
config = {
"medusa_num_heads": num_heads,
"medusa_num_layers": num_layers,
}
elif mode == "eagle":
config = {
"eagle_num_layers": num_layers,
"use_input_layernorm_in_first_layer": True,
"use_last_layernorm": False,
}
else:
raise NotImplementedError(f"Unknown mode {mode}.")
mtsp.convert(model, [(mode, config)])
tokenizer = transformers.AutoTokenizer.from_pretrained(hf_model_dir)
tokenizer.pad_token_id = tokenizer.eos_token_id
# Create a dummy trainer.
trainer = transformers.Trainer(model=model, tokenizer=tokenizer)
trainer._move_model_to_device(model, 'cuda')
# Enable HF checkpointing so that the saved model will contain the speculative decoding module.
mto.enable_huggingface_checkpointing()
trainer.save_model(os.path.join(save_dir, 'native'))
tokenizer.save_pretrained(os.path.join(save_dir, 'native'))
import modelopt.torch.quantization as mtq
import modelopt.torch.utils.dataset_utils as dataset_utils
mto.enable_huggingface_checkpointing()
model = transformers.AutoModelForCausalLM.from_pretrained(
os.path.join(save_dir, 'native'))
tokenizer = transformers.AutoTokenizer.from_pretrained(
os.path.join(save_dir, 'native'))
calib_dataloader = dataset_utils.get_dataset_dataloader(
dataset_name="cnn_dailymail",
tokenizer=tokenizer,
batch_size=1,
num_samples=1,
device=model.device,
include_labels=False,
)
quant_cfg = getattr(mtq, "FP8_DEFAULT_CFG")
# Following quantizers are needed for KV cache quantization.
quant_cfg["quant_cfg"]["*output_quantizer"] = {
"num_bits": (4, 3),
"axis": None,
"enable": True,
}
quant_cfg["quant_cfg"]["*k_bmm_quantizer"] = {
"num_bits": (4, 3),
"axis": None,
"enable": True,
}
quant_cfg["quant_cfg"]["*v_bmm_quantizer"] = {
"num_bits": (4, 3),
"axis": None,
"enable": True,
}
calibrate_loop = dataset_utils.create_forward_loop(
calib_dataloader, dataloader=calib_dataloader)
model = mtq.quantize(model, quant_cfg, forward_loop=calibrate_loop)
mtq.print_quant_summary(model)
export_hf_checkpoint(model,
dtype=model.config.torch_dtype,
export_dir=os.path.join(save_dir, 'fp8'))
def get_mmlu_accuracy(output):
mmlu_line = None
for line in output.split('\n'):
if "MMLU weighted average accuracy:" in line:
mmlu_line = line
break
if mmlu_line is None:
raise Exception(
f"Could not find 'MMLU weighted average accuracy:' in output. Full output:\n{output}"
)
mmlu_accuracy = float(
mmlu_line.split("MMLU weighted average accuracy: ")[1].split(" (")[0])
print(f"MMLU weighted average accuracy is: {mmlu_accuracy}")
return mmlu_accuracy
def wait_for_server(host, port, timeout_seconds=180):
start_time = time.time()
while time.time() - start_time < timeout_seconds:
try:
with socket.create_connection((host, port), timeout=5):
return True
except (socket.error, ConnectionRefusedError, OSError):
time.sleep(2)
return False
def revise_disaggregated_server_config_urls_with_free_ports(
disaggregated_server_config: dict[str, Any]) -> dict[str, Any]:
# Revise serve port
disaggregated_server_config['port'] = get_free_port()
# Revise context and generation server urls
ctx_urls = disaggregated_server_config["context_servers"]["urls"]
gen_urls = disaggregated_server_config["generation_servers"]["urls"]
url_map = dict()
for url in set(ctx_urls + gen_urls):
url_map[url] = (url.split(':')[0], get_free_port())
for i, url in enumerate(ctx_urls):
disaggregated_server_config["context_servers"]["urls"][
i] = f"{url_map[url][0]}:{url_map[url][1]}"
for i, url in enumerate(gen_urls):
disaggregated_server_config["generation_servers"]["urls"][
i] = f"{url_map[url][0]}:{url_map[url][1]}"
return disaggregated_server_config
def revise_disagg_config_file_with_free_ports(disagg_config_file: str) -> str:
# Revise the config file to use free ports
new_config = None
with open(disagg_config_file, 'r') as f:
config = yaml.safe_load(f)
new_config = revise_disaggregated_server_config_urls_with_free_ports(
config)
temp_fd, new_config_file = tempfile.mkstemp(suffix='.yaml')
with os.fdopen(temp_fd, 'w') as f:
yaml.dump(new_config, f)
return new_config_file