mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
106 lines
4.8 KiB
C++
106 lines
4.8 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/config.h"
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <tuple>
|
|
#include <unordered_map>
|
|
|
|
TRTLLM_NAMESPACE_BEGIN
|
|
|
|
namespace torch_ext
|
|
{
|
|
namespace cublas_lut
|
|
{
|
|
|
|
struct HashTuple
|
|
{
|
|
size_t operator()(std::tuple<int32_t, int32_t, int32_t> const& x) const
|
|
{
|
|
return std::get<0>(x) ^ std::get<1>(x) ^ std::get<2>(x);
|
|
}
|
|
};
|
|
|
|
// {mp2, k, n}: {algo, m_tile, m_stages, m_numsK, m_reduction, m_swizzle, m_custom, m_cga}
|
|
using AlgoListType = std::unordered_map<std::tuple<int32_t, int32_t, int32_t>, std::array<int, 8>, HashTuple>;
|
|
|
|
inline const AlgoListType spark_bf16_algo_list = {
|
|
// llama 8b instruct fp16 decode
|
|
// [-algo67 -m_tile6 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom130 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 4096, 4096}, {67, 6, 35, 1, 0, 0, 130, 2}},
|
|
// [-algo67 -m_tile393 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom142 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 4096, 6144}, {67, 393, 35, 1, 0, 0, 142, 2}},
|
|
// [-algo67 -m_tile393 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom142 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 4096, 128256}, {67, 393, 35, 1, 0, 0, 142, 2}},
|
|
|
|
// gpt-oss mxfp4-fp16 decode
|
|
// [-algo67 -m_tile393 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom142 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 2880, 201088}, {67, 393, 35, 1, 0, 0, 142, 2}},
|
|
// [-algo14 -m_tile0 -m_stages35 -m_numsK10 -m_reduction2 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
{{8, 2880, 32}, {14, 0, 0, 10, 2, 0, 0, 0}},
|
|
// [-algo21 -m_tile11 -m_stages13 -m_numsK9 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
//-k2880
|
|
{{2048, 2880, 32}, {21, 11, 13, 9, 1, 0, 0, 0}},
|
|
// [-algo21 -m_tile11 -m_stages19 -m_numsK11 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
//-m_workmem1024 -k2880
|
|
{{4096, 2880, 32}, {21, 11, 19, 11, 1, 0, 0, 0}},
|
|
// [-algo23 -m_tile11 -m_stages8 -m_numsK2 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
//-m_workmem1024 -k2880
|
|
{{8, 2880, 5120}, {23, 11, 8, 2, 1, 0, 0, 0}},
|
|
// [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
{{2048, 2880, 5120}, {21, 20, 15, 1, 0, 0, 0, 0}},
|
|
// [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
{{4096, 2880, 5120}, {21, 20, 15, 1, 0, 0, 0, 0}},
|
|
// [-algo23 -m_tile11 -m_stages14 -m_numsK24 -m_reduction1 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
{{8, 4096, 2880}, {23, 11, 14, 24, 1, 0, 0, 0}},
|
|
// [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
{{2048, 4096, 2880}, {21, 20, 15, 1, 0, 0, 0, 0}},
|
|
// [-algo21 -m_tile20 -m_stages15 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom0 -m_mma0 -m_cga0 -m_scheduling1]
|
|
{{4096, 4096, 2880}, {21, 20, 15, 1, 0, 0, 0, 0}},
|
|
|
|
};
|
|
|
|
// bf16*bf16->fp32->bf16
|
|
inline const AlgoListType bf16_algo_list = {
|
|
// Deepseek v3/R1 router gemm
|
|
// [-algo66 -m_tile10 -m_stages35 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom3 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 7168, 256}, {66, 10, 35, 1, 0, 0, 3, 2}},
|
|
{{512, 7168, 256}, {66, 48, 35, 1, 0, 0, 0, 2}},
|
|
{{1024, 7168, 256}, {66, 13, 35, 1, 0, 0, 1, 3}},
|
|
};
|
|
|
|
// fp8*fp8->fp32->fp16
|
|
inline const AlgoListType fp8_algo_list = {
|
|
// Llama-3.1-70B
|
|
// [-algo66 -m_tile393 -m_stages36 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom5 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 8192, 8192}, {66, 393, 36, 1, 0, 0, 5, 2}},
|
|
// [-algo66 -m_tile10 -m_stages36 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom1 -m_mma0 -m_cga2 -m_scheduling1]
|
|
{{8, 8192, 57344}, {66, 10, 36, 1, 0, 0, 1, 2}},
|
|
// Llama-3.3-70B TP4 (this is the default algo on B200. Here we aim to use the same algo on GB200.)
|
|
// [-algo66 -m_tile393 -m_stages36 -m_numsK1 -m_reduction0 -m_swizzle0 -m_custom1 -m_mma0 -m_cga4 -m_scheduling1]
|
|
{{8, 8192, 14336}, {66, 393, 36, 1, 0, 1, 1, 4}},
|
|
};
|
|
|
|
} // namespace cublas_lut
|
|
} // namespace torch_ext
|
|
|
|
TRTLLM_NAMESPACE_END
|