TensorRT-LLMs/examples/gptj/convert_checkpoint.py
2024-08-29 17:25:07 +08:00

159 lines
5.8 KiB
Python

import argparse
import os
import time
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
from transformers import AutoModelForCausalLM
import tensorrt_llm
from tensorrt_llm.hlapi import QuantConfig
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import GPTJConfig, GPTJForCausalLM
from tensorrt_llm.quantization import QuantAlgo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--vocab_size', type=int, default=50400)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_layer', type=int, default=28)
parser.add_argument('--n_head', type=int, default=16)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--norm_eps', type=float, default=1e-05)
parser.add_argument('--rotary_dim', type=int, default=64)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
def args_to_quant_config(args):
quant_algo = None
if args.use_weight_only and args.weight_only_precision == 'int8':
quant_algo = QuantAlgo.W8A16
elif args.use_weight_only and args.weight_only_precision == 'int4':
quant_algo = QuantAlgo.W4A16
return QuantConfig(quant_algo=quant_algo)
def convert_and_save_hf(args):
model_dir = args.model_dir
world_size = args.tp_size * args.pp_size
quant_config = args_to_quant_config(args)
hf_model = AutoModelForCausalLM.from_pretrained(model_dir,
torch_dtype='auto',
trust_remote_code=True)
def convert_and_save_rank(args, rank):
mapping = Mapping(world_size=world_size,
rank=rank,
tp_size=args.tp_size,
pp_size=args.pp_size)
model = GPTJForCausalLM.from_hugging_face(hf_model,
args.dtype,
mapping=mapping,
quant_config=quant_config)
model.save_checkpoint(args.output_dir, save_config=(rank == 0))
del model
if args.workers == 1:
for rank in range(world_size):
convert_and_save_rank(args, rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(convert_and_save_rank, args, rank)
for rank in range(world_size)
]
exceptions = []
for future in as_completed(futures):
try:
future.result()
except Exception as e:
traceback.print_exc()
exceptions.append(e)
assert len(
exceptions
) == 0, "Checkpoint conversion failed, please check error log."
del hf_model
def main():
print(tensorrt_llm.__version__)
args = parse_arguments()
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.model_dir is None:
config = GPTJConfig(architecture='GPTJForCausalLM',
dtype=args.dtype,
num_hidden_layers=args.n_layer,
num_attention_heads=args.n_head,
hidden_size=args.n_embd,
norm_epsilon=args.norm_eps,
vocab_size=args.vocab_size,
position_embedding_type='rope_gptj',
max_position_embeddings=args.n_positions,
hidden_act='gelu',
rotary_dim=args.rotary_dim,
mapping=Mapping(world_size=args.tp_size *
args.pp_size,
tp_size=args.tp_size,
pp_size=args.pp_size),
quantization=args_to_quant_config(args))
config.to_json_file(os.path.join(args.output_dir, 'config.json'))
else:
convert_and_save_hf(args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')
if __name__ == '__main__':
main()