mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
69 lines
2.3 KiB
Python
69 lines
2.3 KiB
Python
from pathlib import Path
|
|
from typing import Any, List, Optional, Union
|
|
|
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
|
|
|
|
class TokenizerBase(PreTrainedTokenizerBase):
|
|
''' This is a protocol for the tokenizer. Users can implement their own tokenizer by inheriting this class. '''
|
|
|
|
|
|
class TransformersTokenizer(TokenizerBase):
|
|
''' A wrapper for the Transformers' tokenizer.
|
|
This is the default tokenizer for LLM. '''
|
|
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
|
|
def __call__(self, text: str, *args, **kwargs) -> Any:
|
|
return self.tokenizer(text, *args, **kwargs)
|
|
|
|
@property
|
|
def eos_token_id(self) -> int:
|
|
return self.tokenizer.eos_token_id
|
|
|
|
@property
|
|
def pad_token_id(self) -> int:
|
|
return self.tokenizer.pad_token_id
|
|
|
|
def encode(self, text: str, *args, **kwargs) -> List[int]:
|
|
return self.tokenizer.encode(text, *args, **kwargs)
|
|
|
|
def decode(self, token_ids: List[int], *args, **kwargs) -> str:
|
|
return self.tokenizer.decode(token_ids, *args, **kwargs)
|
|
|
|
def batch_encode_plus(self, texts: List[str], *args, **kwargs) -> dict:
|
|
return self.tokenizer.batch_encode_plus(texts, *args, **kwargs)
|
|
|
|
def __repr__(self) -> str:
|
|
return f"{self.__class__.__name__}({self.tokenizer})"
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_dir: str, **kwargs):
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir,
|
|
**kwargs)
|
|
return cls(tokenizer)
|
|
|
|
|
|
def tokenizer_factory(obj: Optional[Union[str, Path, PreTrainedTokenizerBase,
|
|
TokenizerBase]] = None,
|
|
**kwargs) -> Optional[TokenizerBase]:
|
|
if obj is None:
|
|
return None
|
|
elif isinstance(obj, (str, Path)):
|
|
default_kwargs = {
|
|
'legacy': False,
|
|
'padding_side': 'left',
|
|
'truncation_side': 'left',
|
|
'trust_remote_code': True,
|
|
'use_fast': True,
|
|
}
|
|
default_kwargs.update(kwargs)
|
|
return TransformersTokenizer.from_pretrained(obj, **default_kwargs)
|
|
elif isinstance(obj, PreTrainedTokenizerBase):
|
|
return TransformersTokenizer(obj)
|
|
elif isinstance(obj, TokenizerBase):
|
|
return obj
|
|
else:
|
|
raise TypeError(f"Unrecognized tokenizer {obj}")
|