TensorRT-LLMs/tests/functional/test_conv2d.py
2024-07-17 20:45:02 +08:00

67 lines
2.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import create_session, run_session
class TestConv2D(unittest.TestCase):
def setUp(self):
# Disable TF32 because accuracy is bad
torch.backends.cudnn.allow_tf32 = False
tensorrt_llm.logger.set_level('error')
def test_conv2d(self):
# test data
dtype = 'float32'
x_data = torch.randn(8, 4, 5, 5, device="cuda")
weight_data = torch.randn(8, 4, 3, 3, device="cuda")
padding = (1, 1)
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
weight = tensorrt_llm.constant(weight_data.cpu().numpy())
output = tensorrt_llm.functional.conv2d(x, weight, padding=padding)
output.mark_output('output', dtype)
# trt run
session = create_session(builder, network, precision=dtype)
inputs = {
'x': x_data,
}
outputs = run_session(session, inputs)
# pytorch run
ref = torch.nn.functional.conv2d(x_data, weight_data, padding=padding)
# compare diff
torch.testing.assert_close(ref, outputs['output'])