TensorRT-LLMs/tests/quantization/test_fp8_rowwise_gemm.py
2024-08-29 17:25:07 +08:00

148 lines
5.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import _utils
import numpy as np
import tensorrt as trt
import torch
from parameterized import parameterized
from polygraphy.backend.trt import CreateConfig, engine_from_network
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm.quantization.functional import fp8_rowwise_gemm
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import run_session, skip_pre_hopper, unittest_name_func
class TestFp8RowwiseGemm(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('verbose')
def _fp8_rowwise_gemm(self, m, n, k, dtype, per_token_scaling,
per_channel_scaling):
shape1 = (m, k)
mat1 = (1 * torch.randn(shape1, device="cuda")).to(
dtype=torch.float8_e4m3fn)
shape2 = (n, k)
mat2 = (1 * torch.randn(shape2, device="cuda")).to(
dtype=torch.float8_e4m3fn)
# Init scales in fp32
shape_scale_a = (m, 1) if per_token_scaling else (1, 1)
scale_a_torch = torch.ones(shape_scale_a,
device="cuda",
dtype=torch.float32)
scale_a_torch *= 1e-2 * torch.randint(
1, 10, shape_scale_a, device="cuda", dtype=torch.float32)
shape_scale_b = (1, n) if per_channel_scaling else (1, 1)
scale_b_torch = torch.ones(shape_scale_b,
device="cuda",
dtype=torch.float32)
scale_b_torch *= 1e-2 * torch.randint(
1, 10, shape_scale_b, device="cuda", dtype=torch.float32)
# Create builder
builder = tensorrt_llm.Builder()
# Create empty network
network = builder.create_network()
# Allow fp8_rowwise_gemm_plugin of dtype type
network.plugin_config.fp8_rowwise_gemm_plugin = dtype
with tensorrt_llm.net_guard(network):
# Init TensorRT-LLM tensor for mat1
x = Tensor(name='x',
shape=mat1.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("fp8"))
# Init TensorRT-LLM tensor for mat2
y = Tensor(name='y',
shape=mat2.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("fp8"))
# Init TensorRT-LLM tensor for per token scaling
scale_a = Tensor(
name='scale_a',
shape=scale_a_torch.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float32"))
# Init TensorRT-LLM tensor for per channel scaling
scale_b = Tensor(
name='scale_b',
shape=scale_b_torch.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float32"))
# Get output tensor for fp8_rowwise_gemm gemm
output = fp8_rowwise_gemm(x, y, scale_a, scale_b, per_token_scaling,
per_channel_scaling)
output.mark_output('output', dtype)
engine = engine_from_network(
(builder.trt_builder, network.trt_network),
config=CreateConfig(
fp8=True,
fp16=(dtype == "float16"),
memory_pool_limits={trt.MemoryPoolType.WORKSPACE: 33554432}))
assert engine is not None, "Failed to build engine"
# Create TensorRT-LLM session
session = tensorrt_llm.runtime.Session.from_serialized_engine(
engine.serialize())
inputs = {
'x': mat1,
'y': mat2,
'scale_a': scale_a_torch,
'scale_b': scale_b_torch
}
# Infer engine
outputs = run_session(session, inputs)
ref = _utils.gt_matmul_fp8_rowwise(mat1,
mat2,
scale_a_torch,
scale_b_torch,
dtype,
bias=None)
for i in range(10):
outputs = run_session(session, inputs)
dtype_atol = {"float16": 5e-3, "float32": 5e-3, "bfloat16": 5e-2}
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'].cpu().numpy(),
atol=dtype_atol[dtype])
@parameterized.expand(product(["float16"], [True], [True]),
name_func=unittest_name_func)
@skip_pre_hopper # fp8_rowwise_gemm is not supported in pre-Hopper
def test_matmul(self, dtype, per_token_scaling, per_channel_scaling):
bs = 2
inseq = 64
hidden_size = 512
# qkv_gemm
self._fp8_rowwise_gemm(bs * inseq, 3 * hidden_size, hidden_size, dtype,
per_token_scaling, per_channel_scaling)
# mlp_gemm_1
self._fp8_rowwise_gemm(bs * inseq, 4 * hidden_size, hidden_size, dtype,
per_channel_scaling, per_token_scaling)
if __name__ == '__main__':
unittest.main()