mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* add skip condition to tests Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> * fix error Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com> --------- Signed-off-by: xinhe-nv <200704525+xinhe-nv@users.noreply.github.com>
945 lines
35 KiB
Python
945 lines
35 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import csv
|
|
import os
|
|
import uuid
|
|
|
|
import pytest
|
|
from defs.common import (convert_weights, generate_mmlu_cmd,
|
|
generate_summary_cmd, quantize_data, venv_check_call,
|
|
venv_mpi_check_call)
|
|
from defs.conftest import (evaltool_mmlu_post_process,
|
|
evaltool_wikilingua_post_process, llm_models_root,
|
|
skip_post_blackwell, skip_pre_ada,
|
|
skip_pre_blackwell)
|
|
from defs.trt_test_alternative import check_call
|
|
from evaltool.constants import (EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT,
|
|
EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT,
|
|
EVALTOOL_MMLU_CONFIG, EVALTOOL_MMLU_RESULT_FILE,
|
|
EVALTOOL_WIKILINGUA_CONFIG,
|
|
EVALTOOL_WIKILINGUA_RESULT_FILE)
|
|
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("num_beams", [1, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("weight_only_precision", ["int4", "int8"])
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_wo_2gpus_summary(llama_example_root,
|
|
llm_mixtral_model_root, llm_datasets_root,
|
|
llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir, num_beams,
|
|
weight_only_precision):
|
|
"run mixtral on 2gpus"
|
|
model_name = 'mixtral'
|
|
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mixtral_model_root,
|
|
data_type="float16",
|
|
use_weight_only=True,
|
|
weight_only_precision=weight_only_precision,
|
|
tp_size=2,
|
|
pp_size=1)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--gpt_attention_plugin=float16",
|
|
"--remove_input_padding=enable",
|
|
"--gemm_plugin=float16",
|
|
f"--max_beam_width={num_beams}",
|
|
"--workers=2",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run inference")
|
|
thresholds = {'int8': 22.0, 'int4': 18.0}
|
|
|
|
summary_cmd = generate_summary_cmd(
|
|
llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=num_beams,
|
|
tensorrt_llm_rouge1_threshold=thresholds[weight_only_precision],
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "2", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.parametrize("model_name", ['Mixtral-8x7B-Instruct-v0.1-fp8'])
|
|
def test_llm_mixtral_4gpus_fp8_mmlu_llmapi(
|
|
mmlu_dataset_root,
|
|
llmapi_example_root,
|
|
model_name,
|
|
llm_venv,
|
|
):
|
|
models_root = llm_models_root()
|
|
model_dir = os.path.join(models_root, model_name)
|
|
|
|
print("Run MMLU test")
|
|
mmlu_cmd = [
|
|
f"{llmapi_example_root}/../mmlu_llmapi.py",
|
|
f"--data_dir={mmlu_dataset_root}",
|
|
f"--hf_model_dir={model_dir}",
|
|
"--backend=tensorrt",
|
|
"--check_accuracy",
|
|
"--tp_size=4",
|
|
"--accuracy_threshold=69.5",
|
|
]
|
|
|
|
venv_check_call(llm_venv, mmlu_cmd)
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("num_beams", [1, 4],
|
|
ids=lambda num_beams: f'nb:{num_beams}')
|
|
@pytest.mark.parametrize("llm_mixtral_model_root",
|
|
['Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_fp8_4gpus_summary(llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, engine_dir, num_beams,
|
|
qcache_dir):
|
|
"run mixtral fp8 on 4gpus"
|
|
data_type = "bfloat16"
|
|
tp_size, pp_size = 2, 2
|
|
world_size = tp_size * pp_size
|
|
|
|
print("Quantizing engine...")
|
|
# Quantize HF llama checkpoint into FP8 format
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mixtral_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype=data_type,
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
calib_size=32)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
f"--moe_plugin={data_type}",
|
|
"--remove_input_padding=enable",
|
|
f"--max_beam_width={num_beams}",
|
|
"--max_input_len=2048",
|
|
"--max_seq_len=4096",
|
|
f"--workers={world_size}",
|
|
"--use_paged_context_fmha=enable",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
tensorrt_llm_rouge1_threshold = 21.5
|
|
summary_cmd = generate_summary_cmd(
|
|
llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=num_beams,
|
|
tensorrt_llm_rouge1_threshold=tensorrt_llm_rouge1_threshold,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
print("Run mmlu...")
|
|
mmlu_cmd = generate_mmlu_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
engine_dir=engine_dir,
|
|
accuracy_threshold=70,
|
|
data_dir=f"{llm_datasets_root}/mmlu")
|
|
|
|
venv_check_call(llm_venv, mmlu_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_fp8_managed_weights_4gpus_summary(llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_datasets_root,
|
|
llm_rouge_root, llm_venv,
|
|
engine_dir, qcache_dir):
|
|
data_type = "bfloat16"
|
|
tp_size, pp_size = 2, 2
|
|
world_size = tp_size * pp_size
|
|
|
|
print("Quantizing engine...")
|
|
# Quantize HF llama checkpoint into FP8 format
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mixtral_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype=data_type,
|
|
qformat="fp8",
|
|
quantize_dir=qcache_dir,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
calib_size=32)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build", f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}", f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}", f"--moe_plugin={data_type}",
|
|
"--remove_input_padding=enable", f"--max_beam_width=1",
|
|
"--max_input_len=2048", "--max_seq_len=4096", f"--worker={world_size}",
|
|
"--fast_build"
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
tensorrt_llm_rouge1_threshold = 21.5
|
|
summary_cmd = generate_summary_cmd(
|
|
llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=1,
|
|
tensorrt_llm_rouge1_threshold=tensorrt_llm_rouge1_threshold,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
print("Run mmlu...")
|
|
mmlu_cmd = generate_mmlu_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
engine_dir=engine_dir,
|
|
accuracy_threshold=70,
|
|
data_dir=f"{llm_datasets_root}/mmlu")
|
|
venv_check_call(llm_venv, mmlu_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_v1_smooth_quant_4gpus(llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir):
|
|
"Run smooth quant test on 4 gpus"
|
|
data_type = "float16"
|
|
model_dir = convert_weights(
|
|
llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="mixtral-sq",
|
|
model_path=llm_mixtral_model_root,
|
|
tp_size=2,
|
|
pp_size=2,
|
|
smoothquant=0.5,
|
|
per_channel=True,
|
|
per_token=True,
|
|
data_type=data_type,
|
|
calib_dataset=f"{llm_datasets_root}/ccdv/cnn_dailymail",
|
|
workers=4)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--max_beam_width=4",
|
|
"--workers=4",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=4,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=23,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(8)
|
|
@pytest.mark.skip_less_device_memory(45000)
|
|
@pytest.mark.parametrize(
|
|
"moe_tp_size", [1, 4, 8],
|
|
ids=['expert_parallel', 'mixed_parallel', 'tensor_parallel'])
|
|
@pytest.mark.parametrize("moe_renorm_mode", [0, 1],
|
|
ids=['no_renormalize', 'renormalize'])
|
|
@pytest.mark.parametrize("mode", [0, 1], ids=['plugin', 'ootb_except_mha'])
|
|
@pytest.mark.parametrize("llm_mixtral_model_root",
|
|
['Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_v1_8gpus_summary(llama_example_root,
|
|
llm_mixtral_model_root, llm_datasets_root,
|
|
llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir, moe_tp_size, moe_renorm_mode,
|
|
mode):
|
|
"Run test on 8 gpus with moe_renorm_mode"
|
|
data_type = "float16"
|
|
|
|
tp_size, pp_size = 8, 1
|
|
world_size = tp_size * pp_size
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="mixtral",
|
|
model_path=llm_mixtral_model_root,
|
|
tp_size=tp_size,
|
|
moe_tp_size=moe_tp_size,
|
|
moe_ep_size=tp_size // moe_tp_size,
|
|
pp_size=pp_size,
|
|
data_type=data_type,
|
|
moe_renorm_mode=moe_renorm_mode,
|
|
workers=world_size)
|
|
gemm_plugin = "disable" if mode == "ootb-except-mha" else data_type
|
|
moe_plugin = "disable" if mode == "ootb-except-mha" else data_type
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gemm_plugin={gemm_plugin}",
|
|
f"--moe_plugin={moe_plugin}",
|
|
f"--workers={world_size}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--max_beam_width=4",
|
|
f"--max_seq_len={8192}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=4,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=21,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1'],
|
|
indirect=True)
|
|
def test_mixtal_evaltool(llama_example_root, evaltool_root,
|
|
llm_mixtral_model_root, llm_venv, engine_dir,
|
|
cmodel_dir):
|
|
|
|
print("Build engines...")
|
|
|
|
data_type = "float16"
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model='mixtral',
|
|
model_path=llm_mixtral_model_root,
|
|
tp_size=4,
|
|
pp_size=1,
|
|
data_type=data_type,
|
|
workers=4)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--gather_context_logits",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=7000",
|
|
"--max_seq_len=7048",
|
|
"--workers=4",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Human eval")
|
|
start_inference_server = [
|
|
EVALTOOL_INFERENCE_SERVER_STARTUP_SCRIPT, "-e", engine_dir, "-t",
|
|
llm_mixtral_model_root, "-d", evaltool_root, "-m", "1024", "-c", "4"
|
|
]
|
|
check_call(" ".join(start_inference_server),
|
|
shell=True,
|
|
env=llm_venv._new_env)
|
|
|
|
task_list = ['wikilingua', 'mmlu']
|
|
try:
|
|
for task in task_list:
|
|
project_id = str(uuid.uuid4())
|
|
if task == "wikilingua":
|
|
config_file = EVALTOOL_WIKILINGUA_CONFIG
|
|
result_file = EVALTOOL_WIKILINGUA_RESULT_FILE
|
|
|
|
if task == "mmlu":
|
|
config_file = EVALTOOL_MMLU_CONFIG
|
|
result_file = EVALTOOL_MMLU_RESULT_FILE
|
|
|
|
# Update config dynamically
|
|
import yaml
|
|
with open(config_file, 'r') as f:
|
|
lm_eval_config = yaml.safe_load(f)
|
|
lm_eval_config['model']['llm_name'] = llm_mixtral_model_root
|
|
lm_eval_config['model']['tokenizer_path'] = model_dir
|
|
|
|
config_file = os.path.join(llm_venv.get_working_directory(),
|
|
"lm_eval_config.yaml")
|
|
with open(config_file, 'w') as f:
|
|
yaml.dump(lm_eval_config, f)
|
|
|
|
# launch evaluation
|
|
run_cmd = [
|
|
f"cd {evaltool_root}",
|
|
"&&",
|
|
"source .venv/bin/activate",
|
|
"&&",
|
|
"python3",
|
|
f"evaltool/interfaces/cli/main.py",
|
|
"project",
|
|
"launch",
|
|
f"--eval_project_config_file '{config_file}'",
|
|
"--infra_name local",
|
|
f"--output_dir '{llm_venv.get_working_directory()}'",
|
|
f"--project_id {project_id}",
|
|
]
|
|
# venv_mpi_check_call(llm_venv, [
|
|
# "mpirun", "--allow-run-as-root", "--oversubscribe", "-np", "4"
|
|
# ], run_cmd)
|
|
check_call(" ".join(run_cmd), shell=True, executable="/bin/bash")
|
|
|
|
# process result
|
|
result_path = f"{llm_venv.get_working_directory()}/{project_id}/{result_file}"
|
|
check_call(f"cat {result_path}", shell=True)
|
|
|
|
if task == 'mmlu':
|
|
evaltool_mmlu_post_process(result_path, 0.71775, 0.006)
|
|
if task == 'wikilingua':
|
|
evaltool_wikilingua_post_process(result_path, 0.2776, 0.006)
|
|
finally:
|
|
# stop the server
|
|
end_inference_server = [
|
|
EVALTOOL_INFERENCE_SERVER_STOP_SCRIPT, "-c", "4"
|
|
]
|
|
check_call(" ".join(end_inference_server),
|
|
shell=True,
|
|
env=llm_venv._new_env)
|
|
|
|
|
|
@pytest.mark.skip_less_device(8)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("test_type", ['build', 'infer'])
|
|
@pytest.mark.parametrize(
|
|
"moe_tp_size", [1, 4, 8],
|
|
ids=['expert_parallel', 'mixed_parallel', 'tensor_parallel'])
|
|
@pytest.mark.parametrize("moe_renorm_mode", [0, 1],
|
|
ids=['no_renormalize', 'renormalize'])
|
|
@pytest.mark.parametrize("mode", [0, 1], ids=['plugin', 'ootb_except_mha'])
|
|
@pytest.mark.parametrize("llm_mixtral_model_root",
|
|
['Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_2nodes_8gpus(llama_example_root, llm_mixtral_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv,
|
|
cmodel_dir, engine_dir, moe_tp_size,
|
|
moe_renorm_mode, mode, test_type):
|
|
"Run test on 2x8 gpus with moe_renorm_mode"
|
|
data_type = "float16"
|
|
tp_size, pp_size = 8, 2
|
|
world_size = tp_size * pp_size
|
|
model_name = os.path.basename(llm_mixtral_model_root)
|
|
engine_dir = os.path.join(llama_example_root, "engines", model_name,
|
|
data_type, f"{world_size}-gpu",
|
|
f"tp{tp_size}pp{pp_size}moe{moe_tp_size}",
|
|
f"renorm_{moe_renorm_mode}", f"mode_{mode}")
|
|
|
|
if test_type == "build":
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="mixtral",
|
|
model_path=llm_mixtral_model_root,
|
|
tp_size=tp_size,
|
|
moe_tp_size=moe_tp_size,
|
|
moe_ep_size=tp_size // moe_tp_size,
|
|
pp_size=pp_size,
|
|
data_type=data_type,
|
|
moe_renorm_mode=moe_renorm_mode)
|
|
|
|
gemm_plugin = "disable" if mode == "ootb-except-mha" else data_type
|
|
moe_plugin = "disable" if mode == "ootb-except-mha" else data_type
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gemm_plugin={gemm_plugin}",
|
|
f"--moe_plugin={moe_plugin}",
|
|
f"--workers={8}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--max_beam_width=4",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
if test_type == "infer":
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=4,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=23,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(45000)
|
|
@pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"],
|
|
indirect=True)
|
|
def test_llm_mixtral_moe_plugin_lora_4gpus(
|
|
llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_venv,
|
|
cmodel_dir,
|
|
engine_dir,
|
|
llm_lora_model_root,
|
|
):
|
|
"run Mixtral MoE lora test on 4 gpu."
|
|
print("Build engines...")
|
|
dtype = 'float16'
|
|
model_name = os.path.basename(llm_mixtral_model_root)
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
tp_size=4,
|
|
pp_size=1,
|
|
model_path=llm_mixtral_model_root,
|
|
data_type=dtype)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--lora_plugin=auto",
|
|
"--moe_plugin=auto",
|
|
f"--lora_dir={llm_lora_model_root}",
|
|
"--worker=4",
|
|
"--max_batch_size=8",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
ref_1 = [
|
|
1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924,
|
|
29926, 28971, 29242, 28988
|
|
]
|
|
ref_2 = [
|
|
1, 315, 2016, 285, 4284, 526, 5680, 28723, 28705, 28740, 28723, 661
|
|
]
|
|
|
|
input_text = "我爱吃蛋糕"
|
|
print("Run inference with lora id 0...")
|
|
run_cmd = [
|
|
f"{llama_example_root}/../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=0",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_1 == predict
|
|
|
|
print("Run inference with lora id -1...")
|
|
input_text = "I love french quiche"
|
|
run_cmd = [
|
|
f"{llama_example_root}/../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=-1",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_2 == predict
|
|
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"],
|
|
indirect=True)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"],
|
|
indirect=True)
|
|
def test_llm_mixtral_moe_plugin_fp8_lora_4gpus(
|
|
llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_venv,
|
|
qcache_dir,
|
|
engine_dir,
|
|
llm_lora_model_root,
|
|
):
|
|
"run Mixtral MoE lora test on 4 gpu."
|
|
print("Build engines...")
|
|
dtype = 'float16'
|
|
tp_size = 4
|
|
pp_size = 1
|
|
workers = tp_size * pp_size
|
|
|
|
print("Quantizing engine...")
|
|
model_dir = quantize_data(llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mixtral_model_root,
|
|
dtype=dtype,
|
|
qformat="fp8",
|
|
kv_cache_dtype="fp8",
|
|
quantize_dir=qcache_dir,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--workers={workers}",
|
|
"--max_batch_size=8",
|
|
f"--output_dir={engine_dir}",
|
|
f"--lora_dir={llm_lora_model_root}",
|
|
f"--lora_plugin={dtype}",
|
|
f"--moe_plugin={dtype}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
ref_1 = [
|
|
1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924,
|
|
29926, 28971, 29242, 28988
|
|
]
|
|
|
|
input_text = "我爱吃蛋糕"
|
|
print("Run inference with lora id 0...")
|
|
run_cmd = [
|
|
f"{llama_example_root}/../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=0",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv,
|
|
["mpirun", "-n", f"{workers}", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_1 == predict
|
|
|
|
ref_2 = [
|
|
1, 315, 2016, 285, 4284, 526, 5680, 28723, 315, 2016, 272, 1439, 469,
|
|
28725
|
|
]
|
|
print("Run inference with lora id -1...")
|
|
input_text = "I love french quiche. I"
|
|
run_cmd = [
|
|
f"{llama_example_root}/../run.py",
|
|
"--max_output_len=5",
|
|
f"--input_text={input_text}",
|
|
"--lora_task_uids=-1",
|
|
f"--tokenizer_dir={llm_lora_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv",
|
|
"--use_py_session",
|
|
]
|
|
venv_mpi_check_call(llm_venv,
|
|
["mpirun", "-n", f"{workers}", "--allow-run-as-root"],
|
|
run_cmd)
|
|
|
|
with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f:
|
|
predict = csv.reader(f)
|
|
predict = next(predict)
|
|
predict = [int(p) for p in predict]
|
|
assert ref_2 == predict
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(45000)
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_pp_reduce_scatter_4gpus(llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir):
|
|
"Run PP reduce scatter test on 4 gpus"
|
|
data_type = "float16"
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model="mixtral",
|
|
model_path=llm_mixtral_model_root,
|
|
tp_size=2,
|
|
pp_size=2,
|
|
data_type=data_type,
|
|
workers=4)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
f"--gpt_attention_plugin={data_type}",
|
|
f"--gemm_plugin={data_type}",
|
|
"--max_input_len=1024",
|
|
"--max_batch_size=1",
|
|
"--context_fmha=enable",
|
|
"--pp_reduce_scatter=enable",
|
|
"--max_beam_width=4",
|
|
"--workers=4",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run summarize...")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=llm_mixtral_model_root,
|
|
data_type="fp16",
|
|
num_beams=4,
|
|
engine_dir=engine_dir,
|
|
tensorrt_llm_rouge1_threshold=23,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@skip_pre_blackwell
|
|
@pytest.mark.skip_less_device_memory(180000)
|
|
@pytest.mark.parametrize("fp4_type", ["plugin", "ootb", "disable"],
|
|
ids=["fp4_plugin", "fp4_ootb", "disable_fp4"])
|
|
@pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1'],
|
|
indirect=True)
|
|
def test_llm_mixtral_1gpu_fp4(
|
|
mmlu_dataset_root,
|
|
fp4_type,
|
|
llama_example_root,
|
|
llm_mixtral_model_root,
|
|
llm_venv,
|
|
cmodel_dir,
|
|
engine_dir,
|
|
qcache_dir,
|
|
llm_datasets_root,
|
|
):
|
|
model_name = os.path.basename(llm_mixtral_model_root)
|
|
|
|
if fp4_type != "disable":
|
|
model_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=llm_mixtral_model_root,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype="float16",
|
|
qformat="nvfp4",
|
|
kv_cache_dtype="fp8",
|
|
quantize_dir=qcache_dir)
|
|
else:
|
|
model_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=llama_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_mixtral_model_root,
|
|
data_type='float16')
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build", f"--checkpoint_dir={model_dir}",
|
|
f"--output_dir={engine_dir}", "--max_input_len=2048"
|
|
]
|
|
if fp4_type != "disable":
|
|
build_cmd.extend([
|
|
"--gemm_plugin=disable"
|
|
if fp4_type == "ootb" else "--gemm_plugin=nvfp4"
|
|
])
|
|
if fp4_type == "plugin":
|
|
build_cmd.extend([
|
|
"--use_paged_context_fmha=enable", "--use_fp8_context_fmha=enable"
|
|
])
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run MMLU test")
|
|
acc_thres = 68.0
|
|
mmlu_cmd = [
|
|
f"{llama_example_root}/../mmlu_llmapi.py",
|
|
f"--data_dir={mmlu_dataset_root}",
|
|
f"--hf_model_dir={llm_mixtral_model_root}",
|
|
f"--engine_dir={engine_dir}",
|
|
"--check_accuracy",
|
|
f"--accuracy_threshold={acc_thres}",
|
|
]
|
|
|
|
venv_check_call(llm_venv, mmlu_cmd)
|
|
|
|
|
|
@skip_pre_blackwell
|
|
@pytest.mark.parametrize("model_name", ['Mixtral-8x7B-Instruct-v0.1'])
|
|
def test_llm_mixtral_1gpu_fp4_llmapi(
|
|
mmlu_dataset_root,
|
|
llmapi_example_root,
|
|
model_name,
|
|
llm_venv,
|
|
):
|
|
models_root = llm_models_root()
|
|
model_dir = os.path.join(models_root, "nvfp4-quantized", model_name)
|
|
|
|
print("Run MMLU test")
|
|
mmlu_cmd = [
|
|
f"{llmapi_example_root}/../mmlu_llmapi.py",
|
|
f"--data_dir={mmlu_dataset_root}",
|
|
f"--hf_model_dir={model_dir}",
|
|
"--backend=tensorrt",
|
|
"--check_accuracy",
|
|
f"--accuracy_threshold=68.0",
|
|
]
|
|
|
|
venv_check_call(llm_venv, mmlu_cmd)
|
|
|
|
|
|
@skip_post_blackwell
|
|
@pytest.mark.parametrize(
|
|
"model_name", ['mixtral-8x7b-v0.1-AWQ', 'Mixtral-8x7B-Instruct-v0.1'])
|
|
def test_llm_mixtral_int4_awq_1gpu_summary(llama_example_root,
|
|
llm_datasets_root, model_name,
|
|
llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir,
|
|
qcache_dir_without_install_package):
|
|
models_root = llm_models_root()
|
|
model_dir = os.path.join(models_root, model_name)
|
|
ckpt_dir = os.path.join(cmodel_dir, model_name)
|
|
|
|
if 'AWQ' in model_name:
|
|
print("Convert checkpoint...")
|
|
convert_cmd = [
|
|
f"{llama_example_root}/convert_checkpoint.py",
|
|
"--model_dir",
|
|
model_dir,
|
|
"--output_dir",
|
|
ckpt_dir,
|
|
]
|
|
venv_check_call(llm_venv, convert_cmd)
|
|
else:
|
|
print("Quantizing model...")
|
|
ckpt_dir = quantize_data(
|
|
llm_venv,
|
|
llama_example_root,
|
|
model_dir=model_dir,
|
|
calib_dataset=f"{llm_datasets_root}/cnn_dailymail",
|
|
dtype="float16",
|
|
qformat="int4_awq",
|
|
quantize_dir=qcache_dir_without_install_package,
|
|
tp_size=1,
|
|
calib_size=32)
|
|
|
|
print("Build engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run inference")
|
|
summary_cmd = generate_summary_cmd(llama_example_root,
|
|
hf_model_dir=model_dir,
|
|
data_type="fp16",
|
|
tensorrt_llm_rouge1_threshold=19.5,
|
|
engine_dir=engine_dir,
|
|
dataset_dir=llm_datasets_root,
|
|
rouge_dir=llm_rouge_root)
|
|
|
|
venv_check_call(llm_venv, summary_cmd)
|