mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Support DeepSeek-R1 W4A8 on Hopper Co-authored-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com> Co-authored-by: Jiang Shao <91270701+StudyingShao@users.noreply.github.com> Signed-off-by: Barry Kang <43644113+Barry-Delaney@users.noreply.github.com>
139 lines
4.9 KiB
C++
139 lines
4.9 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/runtime/cudaStream.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <c10/core/DeviceType.h>
|
|
#include <cuda_runtime.h>
|
|
#include <torch/types.h>
|
|
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
namespace tensorrt_llm::runtime
|
|
{
|
|
|
|
class TorchUtils
|
|
{
|
|
public:
|
|
using SizeType32 = at::IntArrayRef::value_type;
|
|
|
|
static std::vector<SizeType32> shape(ITensor::Shape const& dims)
|
|
{
|
|
TLLM_CHECK(dims.nbDims >= 0);
|
|
std::vector<SizeType32> shape{};
|
|
shape.reserve(dims.nbDims);
|
|
std::transform(
|
|
dims.d, dims.d + dims.nbDims, std::back_inserter(shape), [](auto x) { return static_cast<SizeType32>(x); });
|
|
return shape;
|
|
}
|
|
|
|
static ITensor::Shape shape(at::IntArrayRef const& sizes)
|
|
{
|
|
TLLM_CHECK(sizes.size() <= ITensor::Shape::MAX_DIMS);
|
|
ITensor::Shape shape;
|
|
shape.nbDims = static_cast<runtime::SizeType32>(sizes.size());
|
|
using dimType = std::remove_reference_t<decltype(shape.d[0])>;
|
|
for (std::size_t i = 0; i < sizes.size(); ++i)
|
|
{
|
|
TLLM_CHECK(sizes[i] <= std::numeric_limits<dimType>::max());
|
|
shape.d[i] = static_cast<dimType>(sizes[i]);
|
|
}
|
|
return shape;
|
|
}
|
|
|
|
static std::vector<SizeType32> makeShape(std::initializer_list<runtime::ITensor::DimType64> sizes)
|
|
{
|
|
return shape(ITensor::makeShape(sizes));
|
|
}
|
|
|
|
static at::Device device(void const* ptr)
|
|
{
|
|
::cudaPointerAttributes attr{};
|
|
TLLM_CUDA_CHECK(cudaPointerGetAttributes(&attr, ptr));
|
|
auto const memoryType = attr.type;
|
|
return (memoryType == ::cudaMemoryTypeDevice || memoryType == ::cudaMemoryTypeManaged)
|
|
? at::Device{at::kCUDA, static_cast<at::DeviceIndex>(attr.device)}
|
|
: at::Device{at::kCPU};
|
|
}
|
|
|
|
static at::ScalarType dataType(IBuffer::DataType dataType)
|
|
{
|
|
switch (dataType)
|
|
{
|
|
case IBuffer::DataType::kFLOAT: return at::ScalarType::Float;
|
|
case IBuffer::DataType::kHALF: return at::ScalarType::Half;
|
|
case IBuffer::DataType::kINT8: return torch::kInt8;
|
|
case IBuffer::DataType::kUINT8: return torch::kUInt8;
|
|
case IBuffer::DataType::kINT32: return torch::kInt32;
|
|
case IBuffer::DataType::kINT64: return torch::kInt64;
|
|
case IBuffer::DataType::kBOOL: return at::ScalarType::Bool;
|
|
case IBuffer::DataType::kFP8: return at::ScalarType::Float8_e4m3fn;
|
|
case IBuffer::DataType::kBF16: return at::ScalarType::BFloat16;
|
|
default: TLLM_THROW("unsupported data type");
|
|
}
|
|
}
|
|
|
|
static IBuffer::DataType dataType(at::ScalarType scalarType)
|
|
{
|
|
switch (scalarType)
|
|
{
|
|
case at::ScalarType::Float: return IBuffer::DataType::kFLOAT;
|
|
case at::ScalarType::Half: return IBuffer::DataType::kHALF;
|
|
case torch::kInt8: return IBuffer::DataType::kINT8;
|
|
case torch::kUInt8: return IBuffer::DataType::kUINT8;
|
|
case torch::kInt32: return IBuffer::DataType::kINT32;
|
|
case torch::kInt64: return IBuffer::DataType::kINT64;
|
|
case at::ScalarType::Bool: return IBuffer::DataType::kBOOL;
|
|
case at::ScalarType::Float8_e4m3fn: return IBuffer::DataType::kFP8;
|
|
case at::ScalarType::BFloat16: return IBuffer::DataType::kBF16;
|
|
case at::ScalarType::QUInt4x2: return IBuffer::DataType::kINT4;
|
|
default: TLLM_THROW("unsupported data type");
|
|
}
|
|
}
|
|
|
|
static at::DeviceType deviceType(runtime::MemoryType memoryType)
|
|
{
|
|
switch (memoryType)
|
|
{
|
|
case runtime::MemoryType::kGPU: return c10::kCUDA;
|
|
case runtime::MemoryType::kCPU: [[fallthrough]];
|
|
case runtime::MemoryType::kPINNED: [[fallthrough]];
|
|
case runtime::MemoryType::kPINNEDPOOL: [[fallthrough]];
|
|
default: return c10::kCPU;
|
|
}
|
|
}
|
|
|
|
static at::cuda::CUDAStream stream(runtime::CudaStream const& cudaStream)
|
|
{
|
|
return at::cuda::getStreamFromExternal(cudaStream.get(), static_cast<at::DeviceIndex>(cudaStream.getDevice()));
|
|
}
|
|
|
|
private:
|
|
TorchUtils() = default;
|
|
};
|
|
|
|
} // namespace tensorrt_llm::runtime
|