mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
745 lines
33 KiB
C++
745 lines
33 KiB
C++
/*
|
|
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "fmhaRunner.h"
|
|
#include "tensorrt_llm/common/envUtils.h"
|
|
#include "tensorrt_llm/common/mathUtils.h"
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <cuda_runtime.h>
|
|
#include <iostream>
|
|
#include <math.h>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
union __half2_uint32_t_union
|
|
{
|
|
half2 fp162;
|
|
uint32_t u32;
|
|
};
|
|
|
|
union __float_uint32_t_union
|
|
{
|
|
float fp32;
|
|
uint32_t u32;
|
|
};
|
|
|
|
static inline void set_alpha(uint32_t& alpha, float norm, Data_type dtype)
|
|
{
|
|
if (dtype == DATA_TYPE_FP16)
|
|
{
|
|
__half2_uint32_t_union temp;
|
|
temp.fp162 = __float2half2_rn(norm);
|
|
alpha = temp.u32;
|
|
}
|
|
else if (dtype == DATA_TYPE_FP32)
|
|
{
|
|
__float_uint32_t_union temp;
|
|
temp.fp32 = norm;
|
|
alpha = temp.u32;
|
|
}
|
|
else if (dtype == DATA_TYPE_INT32)
|
|
{
|
|
int32_t inorm = static_cast<int32_t>(norm);
|
|
alpha = reinterpret_cast<uint32_t const&>(inorm);
|
|
}
|
|
else if (dtype == DATA_TYPE_BF16)
|
|
{
|
|
// TODO HACK!! BF16 Outputs are computed in FP32 for FP8.
|
|
// This is because cublas does not allow current FP32 output.
|
|
alpha = reinterpret_cast<uint32_t const&>(norm);
|
|
}
|
|
else
|
|
{
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
FusedMHARunnerV2::FusedMHARunnerV2(MHARunnerFixedParams fixedParams)
|
|
: mFixedParams(fixedParams)
|
|
{
|
|
TLLM_CHECK_WITH_INFO((mSM == kSM_80 || mSM == kSM_86 || mSM == kSM_89 || mSM == kSM_90 || mSM == kSM_100
|
|
|| mSM == kSM_120 || mSM == kSM_121),
|
|
"Unsupported architecture");
|
|
TLLM_CHECK_WITH_INFO((mFixedParams.dataType == DATA_TYPE_FP16 || mFixedParams.dataType == DATA_TYPE_BF16
|
|
|| mFixedParams.dataType == DATA_TYPE_E4M3),
|
|
"Unsupported data type");
|
|
xmmaKernel = getXMMAKernelsV2(mFixedParams.dataType, mFixedParams.dataTypeOut, mSM);
|
|
|
|
if (mFixedParams.headSizeV == 0)
|
|
{
|
|
mFixedParams.headSizeV = mFixedParams.headSize;
|
|
}
|
|
// Get device attributes.
|
|
int device_id;
|
|
cudaGetDevice(&device_id);
|
|
cudaDeviceGetAttribute(&mMultiProcessorCount, cudaDevAttrMultiProcessorCount, device_id);
|
|
cudaDeviceGetAttribute(&mDeviceL2CacheSize, cudaDevAttrL2CacheSize, device_id);
|
|
auto const [free_memory, total_memory] = tensorrt_llm::common::getDeviceMemoryInfo(false);
|
|
mTotalDeviceMemory = total_memory;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Shared setup function.
|
|
void FusedMHARunnerV2::setupKernelParams(MHARunnerParams runnerParams)
|
|
{
|
|
// Reinit kernel params.
|
|
mKernelParams = {};
|
|
|
|
// Set the batch size, and sequence length.
|
|
mKernelParams.b = runnerParams.b;
|
|
mKernelParams.s = runnerParams.qSeqLen;
|
|
mKernelParams.sliding_window_size = runnerParams.slidingWindowSize;
|
|
// Set the log chunked attention size if the chunked attention is used.
|
|
if (mLaunchParams.attention_mask_type == ContextAttentionMaskType::SLIDING_OR_CHUNKED_CAUSAL
|
|
&& runnerParams.kvSeqLen > runnerParams.chunkedAttentionSize)
|
|
{
|
|
TLLM_CHECK_WITH_INFO((runnerParams.chunkedAttentionSize & (runnerParams.chunkedAttentionSize - 1)) == 0,
|
|
"Chunked attention size should be a power of 2.");
|
|
mKernelParams.log2_chunked_attention_size = std::log2(runnerParams.chunkedAttentionSize);
|
|
}
|
|
// Set the head size and number of heads.
|
|
mKernelParams.d = mFixedParams.headSize;
|
|
mKernelParams.dv = mFixedParams.headSizeV;
|
|
// The number of grouped heads (only used by generation-phase MLA kernels) currently.
|
|
mKernelParams.num_grouped_heads = runnerParams.numGroupedHeads;
|
|
TLLM_CHECK_WITH_INFO(mFixedParams.numQHeads % mFixedParams.numKvHeads == 0,
|
|
"number of Query heads should be multiple of KV heads !");
|
|
mKernelParams.h = mFixedParams.numQHeads;
|
|
mKernelParams.h_kv = mFixedParams.numKvHeads;
|
|
mKernelParams.h_q_per_kv = mFixedParams.numQHeads / mFixedParams.numKvHeads;
|
|
// Are the input sequences padded ?
|
|
mKernelParams.is_s_padded = mFixedParams.isSPadded;
|
|
|
|
// [total_q, h, 2] (max/sum)
|
|
mKernelParams.softmax_stats_ptr = runnerParams.softmaxStatsPtr;
|
|
mKernelParams.softmax_stats_stride_in_bytes = sizeof(float) * 2 * mFixedParams.numQHeads;
|
|
|
|
if (mFixedParams.attentionInputLayout == AttentionInputLayout::PACKED_QKV)
|
|
{
|
|
// Packed QKV input layout, [B, S, H * D + H_kv * D + H_kv * Dv].
|
|
mKernelParams.qkv_ptr = runnerParams.qkvPtr;
|
|
mKernelParams.q_stride_in_bytes = mKernelParams.k_stride_in_bytes = mKernelParams.v_stride_in_bytes
|
|
= get_size_in_bytes(mFixedParams.numQHeads * mFixedParams.headSize
|
|
+ mFixedParams.numKvHeads * mFixedParams.headSize
|
|
+ mFixedParams.numKvHeads * mFixedParams.headSizeV,
|
|
mFixedParams.dataType);
|
|
}
|
|
else
|
|
{
|
|
// Contiguous Q input layout, [B, S, H, D].
|
|
mKernelParams.q_ptr = runnerParams.qPtr;
|
|
mKernelParams.q_stride_in_bytes
|
|
= get_size_in_bytes(mFixedParams.numQHeads * mFixedParams.headSize, mFixedParams.dataType);
|
|
|
|
// Separate q and kv buffers may have different q and kv sequence lengths.
|
|
mKernelParams.cu_kv_seqlens = reinterpret_cast<int const*>(runnerParams.cuKvSeqLenPtr);
|
|
|
|
if (mFixedParams.attentionInputLayout == AttentionInputLayout::Q_CONTIGUOUS_KV)
|
|
{
|
|
// Contiguous kv input layout, [B, S, H_kv * D + H_kv * Dv].
|
|
mKernelParams.kv_ptr = runnerParams.kvPtr;
|
|
mKernelParams.k_stride_in_bytes = mKernelParams.v_stride_in_bytes = get_size_in_bytes(
|
|
mFixedParams.numKvHeads * (mFixedParams.headSize + mFixedParams.headSizeV), mFixedParams.dataType);
|
|
}
|
|
else if (mFixedParams.attentionInputLayout == AttentionInputLayout::Q_PAGED_KV)
|
|
{
|
|
// Paged kv cache layout.
|
|
mKernelParams.paged_kv_cache = runnerParams.pagedKvCache.copyKVBlockArrayForContextFMHA();
|
|
mKernelParams.k_stride_in_bytes = get_size_in_bytes(
|
|
runnerParams.pagedKvCache.mTokensPerBlock * mFixedParams.headSize, mFixedParams.dataType);
|
|
// If d == dv, then v_stride_in_bytes == k_stride_in_bytes.
|
|
// For DeepSeek MLA, which is the only case where d != dv, V is padded to the sizeof K.
|
|
// Thus, v_stride_in_bytes always equals to k_stride_in_bytes so far.
|
|
mKernelParams.v_stride_in_bytes = mKernelParams.k_stride_in_bytes;
|
|
}
|
|
else if (mFixedParams.attentionInputLayout == AttentionInputLayout::SEPARATE_Q_K_V)
|
|
{
|
|
// Separate QKV input layout, [total_kv_seqlen, H_KV, D] + [total_kv_seqlen, H_KV, DV]
|
|
TLLM_CHECK_WITH_INFO(runnerParams.kPtr != nullptr && runnerParams.vPtr != nullptr,
|
|
"SEPARATE_Q_K_V requires valid K and V pointers.");
|
|
mKernelParams.k_ptr = runnerParams.kPtr;
|
|
mKernelParams.v_ptr = runnerParams.vPtr;
|
|
// Tensor K is contiguous.
|
|
mKernelParams.k_stride_in_bytes
|
|
= get_size_in_bytes(mFixedParams.numKvHeads * mFixedParams.headSize, mFixedParams.dataType);
|
|
if (mFixedParams.headSizeQkNope > 0 && mFixedParams.dataType != DATA_TYPE_E4M3)
|
|
{
|
|
// Non-FP8 context MLA: tensor V is not contiguous. The token stride is numKvHeads * (headSizeQkNope +
|
|
// headSizeV).
|
|
mKernelParams.v_stride_in_bytes = get_size_in_bytes(
|
|
mFixedParams.numKvHeads * (mFixedParams.headSizeQkNope + mFixedParams.headSizeV),
|
|
mFixedParams.dataType);
|
|
}
|
|
else
|
|
{
|
|
// Tensor V is contiguous for other cases.
|
|
mKernelParams.v_stride_in_bytes
|
|
= get_size_in_bytes(mFixedParams.numKvHeads * mFixedParams.headSizeV, mFixedParams.dataType);
|
|
}
|
|
}
|
|
}
|
|
|
|
mKernelParams.o_ptr = runnerParams.outputPtr;
|
|
// Set the output buffer stride in bytes.
|
|
mKernelParams.o_stride_in_bytes
|
|
= get_size_in_bytes(mFixedParams.numQHeads * mFixedParams.headSizeV, mFixedParams.dataTypeOut);
|
|
// Set the packed_mask_stride_in_bytes.
|
|
if (mFixedParams.attentionMaskType == ContextAttentionMaskType::CUSTOM_MASK)
|
|
{
|
|
// The packed mask col (n) dimension has to be padded to multiple of 256.
|
|
mKernelParams.packed_mask_stride_in_bytes
|
|
= (tensorrt_llm::common::divUp(int64_t(runnerParams.kvSeqLen), int64_t(FLASH_ATTEN_PACKED_MASK_N_ALIGNMENT))
|
|
* FLASH_ATTEN_PACKED_MASK_N_ALIGNMENT)
|
|
/ 8;
|
|
}
|
|
|
|
float const inv_sqrt_scale = (1.f / (sqrtf(mFixedParams.headSize) * mFixedParams.qScaling));
|
|
// Note that we apply scales and bias in the order of
|
|
// (bmm1_output * scale_bmm1 + alibi) * scale_after_alibi
|
|
float const scale_after_alibi = mFixedParams.scaleAlibi ? inv_sqrt_scale : 1.0f;
|
|
float scale_bmm1 = mFixedParams.scaleAlibi ? 1.0f : inv_sqrt_scale;
|
|
// Fuse 1.0f / attn_logit_softcapping_scale into scale_bmm1.
|
|
scale_bmm1 = mFixedParams.attnLogitSoftcappingScale != 0.f ? scale_bmm1 / mFixedParams.attnLogitSoftcappingScale
|
|
: scale_bmm1;
|
|
// The softmax output scale (not used).
|
|
float const scale_softmax = 1.f;
|
|
// FP8 FMHA kernels load the scale_bmm2 from the device memory.
|
|
float const scale_bmm2 = 1.f;
|
|
|
|
Data_type scale_type = mLaunchParams.force_fp32_acc ? DATA_TYPE_FP32 : mFixedParams.dataType;
|
|
// Use exp2f optimization for warp-specialized ws kernels on Hopper.
|
|
if (mLaunchParams.useBase2ExpTrick)
|
|
{
|
|
// The kernel adopts the log2f optimization.
|
|
constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E
|
|
set_alpha(mKernelParams.scale_bmm1, scale_bmm1 * float(kLog2e), DATA_TYPE_FP32);
|
|
}
|
|
else
|
|
{
|
|
set_alpha(mKernelParams.scale_bmm1, scale_bmm1, scale_type);
|
|
}
|
|
set_alpha(mKernelParams.scale_softmax, scale_softmax, scale_type);
|
|
// Host scale_bmm2 will not be used.
|
|
set_alpha(mKernelParams.scale_bmm2, scale_bmm2, scale_type);
|
|
// The attention logit softcapping scale after bmm1 (always float32).
|
|
mKernelParams.softcapping_scale_bmm1 = mFixedParams.attnLogitSoftcappingScale;
|
|
|
|
// alibi.
|
|
if (mFixedParams.hasAlibi && mSM > kSM_70)
|
|
{
|
|
mKernelParams.has_alibi = true;
|
|
mKernelParams.alibi_params = AlibiParams(
|
|
mFixedParams.numQHeads, runnerParams.kvSeqLen, mFixedParams.tpSize, mFixedParams.tpRank, scale_after_alibi);
|
|
}
|
|
|
|
if (mFixedParams.attentionMaskType == ContextAttentionMaskType::CUSTOM_MASK)
|
|
{
|
|
mKernelParams.packed_mask_ptr = runnerParams.packedMaskPtr;
|
|
mKernelParams.cu_mask_rows = reinterpret_cast<int const*>(runnerParams.cuMaskRowsPtr);
|
|
}
|
|
TLLM_CHECK_WITH_INFO(
|
|
runnerParams.attentionSinksPtr == nullptr || mSM == kSM_90, "The attention sinks is only supported on SM90.");
|
|
mKernelParams.attention_sinks_ptr = runnerParams.attentionSinksPtr;
|
|
mKernelParams.cu_q_seqlens = reinterpret_cast<int const*>(runnerParams.cuQSeqLenPtr);
|
|
mKernelParams.tile_id_counter_ptr = reinterpret_cast<uint32_t*>(runnerParams.tileCounterPtr);
|
|
// TRT doesn't support host scales. Use device scales instead.
|
|
// The scaleBmm1Ptr offset.
|
|
// 2 scales prepared for scaleBmm1 in the device memory: float scale, float (scale with log2e).
|
|
int64_t scaleBmm1PtrOffset = (mLaunchParams.useBase2ExpTrick ? kIdxScaleSoftmaxLog2Ptr : kIdxScaleSoftmaxPtr);
|
|
// Only fp8 kernels need to load scales from the device memory.
|
|
if (mFixedParams.dataType == DATA_TYPE_E4M3)
|
|
{
|
|
mKernelParams.scale_bmm1_d = reinterpret_cast<uint32_t const*>(runnerParams.scaleBmm1Ptr + scaleBmm1PtrOffset);
|
|
mKernelParams.scale_bmm2_d = reinterpret_cast<uint32_t const*>(runnerParams.scaleBmm2Ptr);
|
|
}
|
|
|
|
// for sage attention
|
|
mKernelParams.sage.q.scales = runnerParams.qScalePtr;
|
|
mKernelParams.sage.k.scales = runnerParams.kScalePtr;
|
|
mKernelParams.sage.v.scales = runnerParams.vScalePtr;
|
|
mKernelParams.sage.q.max_nblock = runnerParams.qMaxNBlock;
|
|
mKernelParams.sage.k.max_nblock = runnerParams.kMaxNBlock;
|
|
mKernelParams.sage.v.max_nblock = runnerParams.vMaxNBlock;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Set the launch params to select kernels.
|
|
void FusedMHARunnerV2::setupLaunchParams(MHARunnerParams runnerParams)
|
|
{
|
|
|
|
// Determine launch parameters.
|
|
// Reset launch params to default.
|
|
mLaunchParams = {};
|
|
|
|
// Device properties.
|
|
mLaunchParams.multi_processor_count = mMultiProcessorCount;
|
|
mLaunchParams.device_l2_cache_size = mDeviceL2CacheSize;
|
|
mLaunchParams.total_device_memory = mTotalDeviceMemory;
|
|
|
|
// Do we use attnLogitSoftcappingScale ?
|
|
TLLM_CHECK_WITH_INFO(
|
|
(mFixedParams.headSize == 128 || mFixedParams.headSize == 256) || !mFixedParams.attnLogitSoftcappingScale,
|
|
"FMHA only supports head_size = 128 or 256 with attention logit softcapping scale currently.");
|
|
mLaunchParams.enableAttnLogitSoftcapping = mFixedParams.attnLogitSoftcappingScale != 0.f;
|
|
// BF16 FMHA only accumulates on FP32.
|
|
// E4M3 FMHA only supports fp32 accumulation currently.
|
|
mLaunchParams.force_fp32_acc = mFixedParams.dataType == DATA_TYPE_BF16 || mFixedParams.dataType == DATA_TYPE_E4M3
|
|
|| mFixedParams.forceFp32Acc || runnerParams.forceFp32Acc;
|
|
// The attention mask type.
|
|
mLaunchParams.attention_mask_type = mFixedParams.attentionMaskType;
|
|
// The input layout type.
|
|
mLaunchParams.attention_input_layout = mFixedParams.attentionInputLayout;
|
|
|
|
// The total sequence length used to set the tma descriptors.
|
|
mLaunchParams.total_q_seqlen
|
|
= mFixedParams.isSPadded ? runnerParams.b * runnerParams.qSeqLen : runnerParams.totalQSeqLen;
|
|
mLaunchParams.total_kv_seqlen
|
|
= mFixedParams.isSPadded ? runnerParams.b * runnerParams.kvSeqLen : runnerParams.totalKvSeqLen;
|
|
// Workaround for nvbug 5412456: total_kv_seqlen fallbacks to total_q_seqlen if it's zero.
|
|
if (mLaunchParams.total_kv_seqlen == 0)
|
|
{
|
|
mLaunchParams.total_kv_seqlen = mLaunchParams.total_q_seqlen;
|
|
}
|
|
|
|
TLLM_CHECK_WITH_INFO(mFixedParams.headSize > 0, "Head size should be greater than 0.");
|
|
// Pad head size to next power of 2.
|
|
int padded_d_next_power_of_2 = (mFixedParams.headSize & (mFixedParams.headSize - 1)) == 0
|
|
? mFixedParams.headSize
|
|
: pow(2, int(log2(mFixedParams.headSize)) + 1);
|
|
// In fact, due to 128B swizzle mode of TMA, only 128 bytes alignment is required,
|
|
// so we pad head size to next multiply of 128B.
|
|
int d_per_group = 128 / get_size_in_bytes(mFixedParams.dataType);
|
|
int d_groups = (mFixedParams.headSize + d_per_group - 1) / d_per_group;
|
|
int padded_d_next_multiply_of_128byte = d_groups * d_per_group;
|
|
// Choose the smaller one to save SMEM.
|
|
mLaunchParams.padded_d = std::min(padded_d_next_power_of_2, padded_d_next_multiply_of_128byte);
|
|
|
|
bool const isSm70 = (mSM == kSM_70);
|
|
bool const isSm90 = (mSM == kSM_90);
|
|
bool const isSm8x = (mSM == kSM_86 || mSM == kSM_89);
|
|
bool const isSm80 = (mSM == kSM_80);
|
|
bool const isSm89 = (mSM == kSM_89);
|
|
bool const isSm100 = (mSM == kSM_100);
|
|
bool const isSm120f = (mSM == kSM_120 || mSM == kSM_121);
|
|
|
|
// Sliding_or_chunked_causal mask.
|
|
if ((runnerParams.kvSeqLen > runnerParams.slidingWindowSize
|
|
|| runnerParams.kvSeqLen > runnerParams.chunkedAttentionSize)
|
|
&& mLaunchParams.attention_mask_type == ContextAttentionMaskType::CAUSAL)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(!(runnerParams.kvSeqLen > runnerParams.chunkedAttentionSize
|
|
&& runnerParams.kvSeqLen > runnerParams.slidingWindowSize),
|
|
"Chunked attention size and sliding window size should not be used together.");
|
|
TLLM_CHECK_WITH_INFO(isSm90 || runnerParams.kvSeqLen <= runnerParams.chunkedAttentionSize,
|
|
"Chunked attention is only supported on Sm90.");
|
|
mLaunchParams.attention_mask_type = ContextAttentionMaskType::SLIDING_OR_CHUNKED_CAUSAL;
|
|
}
|
|
|
|
// Is the input layout separate q + kv input ?
|
|
bool const separateQKvInput = mFixedParams.attentionInputLayout != AttentionInputLayout::PACKED_QKV;
|
|
// Is the mask type padding or causal mask ?
|
|
bool const paddingOrCausalMask = mFixedParams.attentionMaskType == ContextAttentionMaskType::PADDING
|
|
|| mFixedParams.attentionMaskType == ContextAttentionMaskType::CAUSAL;
|
|
|
|
// Only warp-specialized FMHA kernels support FP8 on Hopper.
|
|
// Separate Q + KV input layout: enable warp-specialization kernels when s > 512, otherwise use ampere-style flash
|
|
// attention kernels.
|
|
if (isSm90 && (mFixedParams.dataType == DATA_TYPE_E4M3 || (separateQKvInput && runnerParams.kvSeqLen > 512)))
|
|
{
|
|
mLaunchParams.flash_attention = true;
|
|
mLaunchParams.force_unroll = true;
|
|
}
|
|
else if (isSm70)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(false, "Unsupported architecture");
|
|
}
|
|
// Hopper: fallback to original fmha_v2 when head_size <= 64 and seq_len <= 256
|
|
// Only supports packed_qkv input + padding/causal mask.
|
|
else if (isSm90 && !separateQKvInput && paddingOrCausalMask
|
|
&& (mFixedParams.headSize == 32 || mFixedParams.headSize == 64) && runnerParams.qSeqLen <= 256
|
|
&& !common::getEnvForceDeterministicAttention())
|
|
{
|
|
mLaunchParams.flash_attention = false;
|
|
// get max sequence length for non-flash-attention.
|
|
// this doesn't support different q and kv sequence lengths.
|
|
mLaunchParams.kernel_s = getSFromMaxSeqLen(runnerParams.qSeqLen);
|
|
}
|
|
else
|
|
{ // always use flash attention kernels for Ampere/Ada
|
|
mLaunchParams.flash_attention = true;
|
|
// flash attention kernles s = 0 (support any seq length)
|
|
mLaunchParams.kernel_s = 0;
|
|
mLaunchParams.force_unroll = true;
|
|
// enable tiled kernels on Ampere/Ada
|
|
if ((isSm89 || isSm120f) && mFixedParams.dataType == DATA_TYPE_E4M3)
|
|
{
|
|
// so far Ada QMMA only supports non-tiled kernels.
|
|
mLaunchParams.granular_tiling = false;
|
|
}
|
|
else if (mLaunchParams.flash_attention && runnerParams.kvSeqLen <= 64)
|
|
{
|
|
// flash attention tiled kernels allows larger free dim tile size (M, N) with flexibility
|
|
// in unroll dimension tile size (K). for short sequence length (s<=128), tiled kernels
|
|
// can suffer from tile quantization loss therefore use flash attention non-tiled instead
|
|
mLaunchParams.granular_tiling = false;
|
|
}
|
|
else if ((isSm8x || isSm120f) && mFixedParams.headSize < 256)
|
|
{
|
|
// flash attention tiled kernel is faster on Ada and Ampere derivatives when head_size>=256
|
|
mLaunchParams.granular_tiling = false;
|
|
}
|
|
else if (isSm80 || isSm8x || isSm100 || isSm120f)
|
|
{
|
|
// otherwise, choose tiled kernel for Ampere/Ada/Gb20x
|
|
mLaunchParams.granular_tiling = true;
|
|
}
|
|
}
|
|
|
|
// when flash attention is enabled on Hopper, we need to set the tma descriptors
|
|
if (isSm90 && mLaunchParams.flash_attention)
|
|
{
|
|
mLaunchParams.warp_specialization = true;
|
|
mLaunchParams.use_tma = true;
|
|
// Enable dynamic tile scheduling for hopper ws kernel.
|
|
mLaunchParams.dynamic_scheduler = true;
|
|
}
|
|
|
|
// Use specialized ws kernels on Hopper for cases without alibi.
|
|
if (mLaunchParams.warp_specialization && !mFixedParams.hasAlibi)
|
|
{
|
|
// Use specialized ws kernels for cases without alibi.
|
|
mLaunchParams.useKernelWithoutAlibi = true;
|
|
// Enable exp2f optimization (which helps improve performance).
|
|
// - note that this is not compatible with alibi bias due to the accuracy issues.
|
|
// - only hopper warp-specialized kernels have this optimization.
|
|
// - it doesn't work with attention logit softcapping.
|
|
mLaunchParams.useBase2ExpTrick = !mLaunchParams.enableAttnLogitSoftcapping;
|
|
}
|
|
|
|
// TODO: Refactor these dirty hacks.
|
|
// For Deepseek-v2(MLA), all of SM80, SM89 and SM90 kernels use tiled flash attention
|
|
// in both context (192/128 dimensions) and generation (576/512 dimensions)
|
|
if (mFixedParams.headSize == mFixedParams.headSizeV + 64)
|
|
{
|
|
mLaunchParams.flash_attention = true;
|
|
mLaunchParams.force_unroll = true;
|
|
mLaunchParams.kernel_s = 0;
|
|
|
|
// Now we have SM90 FP8 generation and BF16 context MLA kernels
|
|
bool isHopperFP8GenerationMLA
|
|
= isSm90 && mFixedParams.dataType == DATA_TYPE_E4M3 && mFixedParams.headSizeV == 512;
|
|
bool isHopperBF16ContextMLA
|
|
= isSm90 && mFixedParams.dataType == DATA_TYPE_BF16 && mFixedParams.headSizeV == 128;
|
|
|
|
// These treatments are only for other MLA cases
|
|
if (!isHopperFP8GenerationMLA && !isHopperBF16ContextMLA)
|
|
{
|
|
mLaunchParams.granular_tiling = true;
|
|
// Even on SM90, we use ampere-style kernel, will be optimized later
|
|
mLaunchParams.warp_specialization = false;
|
|
mLaunchParams.useKernelWithoutAlibi = false;
|
|
// Deepseek-V2 kernel is not hooper style right now.
|
|
mLaunchParams.useBase2ExpTrick = false;
|
|
mLaunchParams.use_tma = false;
|
|
mLaunchParams.dynamic_scheduler = false;
|
|
}
|
|
}
|
|
|
|
mLaunchParams.sage_block_size_q = mFixedParams.sageBlockSizeQ;
|
|
mLaunchParams.sage_block_size_k = mFixedParams.sageBlockSizeK;
|
|
mLaunchParams.sage_block_size_v = mFixedParams.sageBlockSizeV;
|
|
// for not (sm90 + warp_specialization + flash attention kernel) kernel:
|
|
// all kernels enable saving softmaxStatsPtr, just let softmaxStatsPtr != null
|
|
// for (sm90 + warp_specialization + flash attention) kernel:
|
|
// we need to explicitly set supportReturnSoftmaxStats to true when
|
|
// satisfying the following constrains
|
|
if (!isSm90)
|
|
{
|
|
mLaunchParams.supportReturnSoftmaxStats = true;
|
|
}
|
|
else
|
|
{
|
|
bool isHopperBF16ContextMLA = (mFixedParams.headSize == mFixedParams.headSizeV + 64) && isSm90
|
|
&& mFixedParams.dataType == DATA_TYPE_BF16 && mFixedParams.headSizeV == 128;
|
|
mLaunchParams.supportReturnSoftmaxStats = (runnerParams.softmaxStatsPtr != nullptr
|
|
&& mLaunchParams.flash_attention && mLaunchParams.warp_specialization
|
|
&& ((!isHopperBF16ContextMLA
|
|
&& mLaunchParams.attention_input_layout == AttentionInputLayout::Q_CONTIGUOUS_KV)
|
|
|| (isHopperBF16ContextMLA
|
|
&& (mLaunchParams.attention_input_layout == AttentionInputLayout::SEPARATE_Q_K_V))));
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// TMA descriptors are used as grid_constant parameters (remove MemCpyH2D operations)
|
|
void FusedMHARunnerV2::setTmaDescriptors(MHARunnerParams runnerParams)
|
|
{
|
|
const uint32_t d = mKernelParams.d;
|
|
const uint32_t dv = mKernelParams.dv;
|
|
const uint32_t h = mKernelParams.h;
|
|
const uint32_t h_kv = mKernelParams.h_kv;
|
|
const uint32_t total_q_seqlen = mLaunchParams.total_q_seqlen;
|
|
const uint32_t total_kv_seqlen = mLaunchParams.total_kv_seqlen;
|
|
|
|
uint64_t const d_in_bytes = get_size_in_bytes(d, mFixedParams.dataType);
|
|
uint64_t const dv_in_bytes = get_size_in_bytes(dv, mFixedParams.dataType);
|
|
|
|
// split D into multiple groups in order to match the TMA swizzle mode (128B)
|
|
uint32_t const padded_d_in_bytes = get_size_in_bytes(mLaunchParams.padded_d, mFixedParams.dataType);
|
|
uint32_t const d_groups = padded_d_in_bytes > 128 ? padded_d_in_bytes / 128 : 1;
|
|
uint32_t const d_bytes_per_group = padded_d_in_bytes / d_groups;
|
|
uint32_t const d_per_group = mLaunchParams.padded_d / d_groups;
|
|
|
|
uint32_t q_step = 0, kv_step = 0;
|
|
xmmaKernel->getStepSize(q_step, kv_step, mKernelParams, mLaunchParams);
|
|
|
|
auto const layout = mFixedParams.attentionInputLayout;
|
|
|
|
// Q Layout: [total_seqlen, H, D]
|
|
const uint32_t tensor_size_q[3] = {d, h, total_q_seqlen};
|
|
|
|
// Stride size in bytes. Assumes least significant dim is 1
|
|
const uint64_t tensor_stride_q[2] = {d_in_bytes, uint64_t(mKernelParams.q_stride_in_bytes)};
|
|
|
|
// Starting memory address
|
|
char const* q_ptr = reinterpret_cast<char const*>(
|
|
layout == AttentionInputLayout::PACKED_QKV ? mKernelParams.qkv_ptr : mKernelParams.q_ptr);
|
|
|
|
// Box size of TMA
|
|
const uint32_t box_size_q[3] = {d_per_group, 1, q_step};
|
|
|
|
// Traversal stride.
|
|
const uint32_t traversal_stride[3] = {1, 1, 1};
|
|
|
|
// OOB fill zeros.
|
|
const uint32_t oob_fill = 0;
|
|
|
|
// FP32 to TF32 conversion disabled.
|
|
const uint32_t fp32_to_tf32 = 0;
|
|
|
|
// GMMA descriptor mode.
|
|
cudaTmaDescSwizzle const swizzle_mode = (d_bytes_per_group > 64
|
|
? cudaTmaDescSwizzle::SWIZZLE_128B
|
|
: (d_bytes_per_group > 32 ? cudaTmaDescSwizzle::SWIZZLE_64B : cudaTmaDescSwizzle::SWIZZLE_32B));
|
|
|
|
// Desc Format (data type).
|
|
cudaTmaDescFormat const desc_format
|
|
= (get_size_in_bytes(mFixedParams.dataType) == 1) ? cudaTmaDescFormat::U8 : cudaTmaDescFormat::F16_RN;
|
|
|
|
Multiple_tma_descriptor<3> qo_tma_descriptor;
|
|
|
|
// Q
|
|
qo_tma_descriptor.set_tma_desctriptor(q_ptr, desc_format, cudaTmaDescInterleave::INTERLEAVE_DISABLED, swizzle_mode,
|
|
cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_q, tensor_stride_q, traversal_stride, box_size_q,
|
|
oob_fill, fp32_to_tf32, &mKernelParams.tma_desc_q);
|
|
|
|
// O
|
|
if ((get_size_in_bytes(mFixedParams.dataTypeOut) == 1)
|
|
&& mLaunchParams.attention_mask_type != ContextAttentionMaskType::SLIDING_OR_CHUNKED_CAUSAL)
|
|
{
|
|
// O Layout: [total_seqlen, H, DV]
|
|
const uint32_t tensor_size_o[3] = {dv, h, total_q_seqlen};
|
|
|
|
const uint64_t tensor_stride_o[2]
|
|
= {get_size_in_bytes(dv, mFixedParams.dataTypeOut), uint64_t(mKernelParams.o_stride_in_bytes)};
|
|
|
|
char* o_ptr = reinterpret_cast<char*>(mKernelParams.o_ptr);
|
|
|
|
// Box size of TMA
|
|
const uint32_t box_size_o[3] = {d_per_group, 1, 16};
|
|
|
|
// dataTypeOut may be different with dataType, so desc_format and swizzle_mode
|
|
// may be incorrect. For example, QKV are in bf16 while O is in fp8.
|
|
// Luckily, this case doesn't exist so far. But we should keep one eye on it.
|
|
qo_tma_descriptor.set_tma_desctriptor(o_ptr, desc_format, cudaTmaDescInterleave::INTERLEAVE_DISABLED,
|
|
swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_o, tensor_stride_o, traversal_stride,
|
|
box_size_o, oob_fill, fp32_to_tf32, &mKernelParams.tma_desc_o);
|
|
}
|
|
|
|
if (layout == AttentionInputLayout::Q_PAGED_KV)
|
|
{
|
|
// KV in q_paged_kv uses 4D tensor
|
|
// Layout: [INT32_MAX, H_KV, TokensPerBlock, D]
|
|
const uint32_t tokens_per_block = mKernelParams.paged_kv_cache.mTokensPerBlock;
|
|
const uint32_t tensor_size_k[4] = {d, tokens_per_block, h_kv, INT_MAX};
|
|
const uint32_t tensor_size_v[4] = {dv, tokens_per_block, h_kv, INT_MAX};
|
|
|
|
const uint64_t tensor_stride_k[3] = {uint64_t(mKernelParams.k_stride_in_bytes / tokens_per_block), // d
|
|
uint64_t(mKernelParams.k_stride_in_bytes), // d * 64
|
|
uint64_t(mKernelParams.paged_kv_cache.mBytesPerBlock)};
|
|
const uint64_t tensor_stride_v[3]
|
|
= {// we cannot use dv * Kernel_traits::ELEMENT_BYTES because V may be padded (MLA)
|
|
uint64_t(mKernelParams.v_stride_in_bytes / tokens_per_block), // dv
|
|
uint64_t(mKernelParams.v_stride_in_bytes), // dv * 64
|
|
uint64_t(mKernelParams.paged_kv_cache.mBytesPerBlock)};
|
|
|
|
char const* kv_ptr = reinterpret_cast<char*>(runnerParams.pagedKvCache.mPrimaryPoolPtr);
|
|
|
|
const uint32_t box_size_kv[4] = {d_per_group, std::min(tokens_per_block, kv_step), 1, 1};
|
|
|
|
TLLM_CHECK(kv_step % tokens_per_block == 0 || tokens_per_block % kv_step == 0);
|
|
mKernelParams.blocks_per_tma_load = std::max<uint32_t>(1, kv_step / tokens_per_block);
|
|
mKernelParams.blocks_per_tma_load_log2 = log2(mKernelParams.blocks_per_tma_load);
|
|
|
|
const uint32_t traversal_stride[4] = {1, 1, 1, 1};
|
|
|
|
Multiple_tma_descriptor<4> kv_tma_descriptor;
|
|
// K
|
|
kv_tma_descriptor.set_tma_desctriptor(kv_ptr, desc_format, cudaTmaDescInterleave::INTERLEAVE_DISABLED,
|
|
swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_k, tensor_stride_k, traversal_stride,
|
|
box_size_kv, oob_fill, fp32_to_tf32, &mKernelParams.tma_desc_k);
|
|
// V
|
|
kv_tma_descriptor.set_tma_desctriptor(kv_ptr, desc_format, cudaTmaDescInterleave::INTERLEAVE_DISABLED,
|
|
swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_v, tensor_stride_v, traversal_stride,
|
|
box_size_kv, oob_fill, fp32_to_tf32, &mKernelParams.tma_desc_v);
|
|
}
|
|
else
|
|
{
|
|
// Otherwise KV uses 3D tensor
|
|
const uint32_t tensor_size_k[3] = {d, h_kv, total_kv_seqlen};
|
|
const uint32_t tensor_size_v[3] = {dv, h_kv, total_kv_seqlen};
|
|
|
|
const uint64_t tensor_stride_k[2] = {d_in_bytes, uint64_t(mKernelParams.k_stride_in_bytes)};
|
|
const uint64_t tensor_stride_v[2] = {dv_in_bytes, uint64_t(mKernelParams.v_stride_in_bytes)};
|
|
|
|
const uint32_t box_size_kv[3] = {d_per_group, 1, kv_step};
|
|
|
|
char const *k_ptr, *v_ptr;
|
|
|
|
if (layout == AttentionInputLayout::PACKED_QKV)
|
|
{
|
|
// Layout: [total_seqlen, (H, D) + (H_KV, D) + (H_KV, DV)]
|
|
k_ptr = q_ptr + h * d_in_bytes;
|
|
v_ptr = k_ptr + h_kv * d_in_bytes;
|
|
}
|
|
else if (layout == AttentionInputLayout::Q_CONTIGUOUS_KV)
|
|
{
|
|
// Layout, [B, S, H_kv * D + H_kv * Dv].
|
|
k_ptr = reinterpret_cast<char const*>(mKernelParams.kv_ptr);
|
|
v_ptr = k_ptr + h_kv * d_in_bytes;
|
|
}
|
|
else if (layout == AttentionInputLayout::SEPARATE_Q_K_V)
|
|
{
|
|
// Layout: [total_kv_seqlen, H_KV, D] + [total_kv_seqlen, H_KV, DV]
|
|
k_ptr = reinterpret_cast<char const*>(mKernelParams.k_ptr);
|
|
v_ptr = reinterpret_cast<char const*>(mKernelParams.v_ptr);
|
|
}
|
|
|
|
Multiple_tma_descriptor<3> kv_tma_descriptor;
|
|
// K
|
|
kv_tma_descriptor.set_tma_desctriptor(k_ptr, desc_format, cudaTmaDescInterleave::INTERLEAVE_DISABLED,
|
|
swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_k, tensor_stride_k, traversal_stride,
|
|
box_size_kv, oob_fill, fp32_to_tf32, &mKernelParams.tma_desc_k);
|
|
// V
|
|
kv_tma_descriptor.set_tma_desctriptor(v_ptr, desc_format, cudaTmaDescInterleave::INTERLEAVE_DISABLED,
|
|
swizzle_mode, cudaTmaDescPromotion::PROMOTION_DISABLED, tensor_size_v, tensor_stride_v, traversal_stride,
|
|
box_size_kv, oob_fill, fp32_to_tf32, &mKernelParams.tma_desc_v);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
void FusedMHARunnerV2::run(MHARunnerParams runnerParams)
|
|
{
|
|
// Note that we must set the launch params first.
|
|
// Set the launch params.
|
|
setupLaunchParams(runnerParams);
|
|
// Set the kernel params.
|
|
setupKernelParams(runnerParams);
|
|
// Need to set tma descriptors additionally.
|
|
if (mSM == kSM_90 && mLaunchParams.use_tma)
|
|
{
|
|
setTmaDescriptors(runnerParams);
|
|
}
|
|
// Select the kernel and run it.
|
|
xmmaKernel->run(mKernelParams, mLaunchParams, runnerParams.stream);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
bool FusedMHARunnerV2::isValidS(int s) const
|
|
{
|
|
return xmmaKernel->isValid(s);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int FusedMHARunnerV2::getSFromMaxSeqLen(int const max_seq_len) const
|
|
{
|
|
int S = 1024;
|
|
|
|
if (max_seq_len <= 64)
|
|
{
|
|
S = 64;
|
|
}
|
|
else if (max_seq_len <= 128)
|
|
{
|
|
S = 128;
|
|
}
|
|
else if (max_seq_len <= 256)
|
|
{
|
|
S = 256;
|
|
}
|
|
else if (max_seq_len <= 384)
|
|
{
|
|
S = 384;
|
|
}
|
|
else if (max_seq_len <= 512)
|
|
{
|
|
S = 512;
|
|
}
|
|
// for bert and vit, use flash attention when s >= 512
|
|
else if (max_seq_len > 512)
|
|
{
|
|
S = max_seq_len;
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Function to check if fmha is supported when building plugins.
|
|
// If any kernel in the map meets the requirements, then return true.
|
|
bool FusedMHARunnerV2::isFmhaSupported()
|
|
{
|
|
bool is_supported = xmmaKernel->checkIfKernelExist(mFixedParams);
|
|
if (!is_supported)
|
|
{
|
|
std::string msg = "FMHA Kernel doesn't exist for mFixedParams:\n" + mFixedParams.convertToStrOutput();
|
|
TLLM_LOG_WARNING("%s\n", msg.c_str());
|
|
}
|
|
return is_supported;
|
|
}
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|