mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
204 lines
7.4 KiB
Python
204 lines
7.4 KiB
Python
import argparse
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import release_gc
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models.falcon.model import FalconForCausalLM
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str)
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument(
|
|
'--dtype',
|
|
type=str,
|
|
default='auto',
|
|
choices=['auto', 'float16', 'bfloat16', 'float32'],
|
|
help=
|
|
"The data type for the model weights and activations if not quantized. "
|
|
"If 'auto', the data type is automatically inferred from the source model; "
|
|
"however, if the source dtype is float32, it is converted to float16.")
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=0,
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
|
)
|
|
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
|
|
parser.add_argument('--load_by_shard',
|
|
action='store_true',
|
|
help='Load a pretrained model shard-by-shard.')
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
parser.add_argument('--log_level', type=str, default='info')
|
|
args = parser.parse_args()
|
|
|
|
tensorrt_llm.logger.set_level(args.log_level)
|
|
|
|
# WAR for modelopt multithreading issue.
|
|
import importlib.metadata
|
|
if (importlib.metadata.version('nvidia-modelopt') < '0.27'
|
|
and args.workers > 1):
|
|
args.workers = 1
|
|
tensorrt_llm.logger.warning(
|
|
'Reducing workers=1 when converting checkpoint because '
|
|
'modelopt has an issue in multi-threading, which will be '
|
|
'fixed in 0.27.')
|
|
|
|
return args
|
|
|
|
|
|
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
|
|
config = QuantConfig()
|
|
if args.use_weight_only and args.weight_only_precision == 'int8':
|
|
config.quant_algo = QuantAlgo.W8A16
|
|
elif args.use_weight_only and args.weight_only_precision == 'int4':
|
|
config.quant_algo = QuantAlgo.W4A16
|
|
return config
|
|
|
|
|
|
def args_to_build_options(args):
|
|
return {
|
|
'use_parallel_embedding': args.use_parallel_embedding,
|
|
'embedding_sharding_dim': args.embedding_sharding_dim,
|
|
}
|
|
|
|
|
|
def convert_and_save_hf(args: argparse.Namespace):
|
|
model_dir = args.model_dir
|
|
load_by_shard = args.load_by_shard
|
|
world_size = args.tp_size * args.pp_size
|
|
# Need to convert the cli args to the kay-value pairs and override them in the generate config dict.
|
|
# Ideally these fields will be moved out of the config and pass them into build API, keep them here for compatibility purpose for now,
|
|
# before the refactor is done.
|
|
override_fields = {}
|
|
override_fields.update(args_to_build_options(args))
|
|
|
|
quant_config = args_to_quant_config(args)
|
|
hf_model = None
|
|
import transformers
|
|
if not args.load_by_shard and quant_config.quant_mode.has_any_quant():
|
|
hf_model = transformers.FalconForCausalLM.from_pretrained(
|
|
model_dir,
|
|
trust_remote_code=True,
|
|
torch_dtype='auto',
|
|
device_map='auto')
|
|
else:
|
|
# Initialize huggingface local cache.
|
|
# Huggingface copies the external configuration source (`configuration_falcon.py` here) into its local cache at
|
|
# `~/.cache/huggingface/modules/transformers_modules/<model-name>`,
|
|
# and if multiple threads attempt to do this concurrently, weird issue can happen:
|
|
# Some threads may see an empty configuration_falcon.py file and fail.
|
|
# Preload the config once to initialize local cache, so subsequent multithread loading won't fail.
|
|
_ = transformers.FalconConfig.from_pretrained(model_dir,
|
|
trust_remote_code=True,
|
|
torch_dtype='auto',
|
|
device_map='auto')
|
|
|
|
def convert_and_save_rank(args, rank: int):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size)
|
|
falcon = FalconForCausalLM.from_hugging_face(
|
|
model_dir if hf_model is None else hf_model,
|
|
dtype=args.dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
load_by_shard=load_by_shard,
|
|
**override_fields,
|
|
)
|
|
falcon.save_checkpoint(args.output_dir, save_config=(rank == 0))
|
|
del falcon
|
|
|
|
execute(args.workers, [convert_and_save_rank] * world_size, args)
|
|
release_gc()
|
|
|
|
|
|
def execute(workers, func, args):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(args, rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
def main():
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
convert_and_save_hf(args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|