mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Signed-off-by: fredw (generated by with_the_same_user script) <20514172+WeiHaocheng@users.noreply.github.com>
189 lines
7.0 KiB
Python
189 lines
7.0 KiB
Python
import copy
|
|
from abc import ABC
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from typing import Any, List, Mapping, Tuple
|
|
|
|
from tensorrt_llm.scaffolding.math_utils import get_digit_majority_vote_result
|
|
from tensorrt_llm.scaffolding.task import (GenerationTask, RewardTask,
|
|
ScaffoldingOutput, Task)
|
|
|
|
|
|
class ScaffoldingOutput:
|
|
|
|
def __init__(self):
|
|
self.output_str = None
|
|
# reserved for customized controller
|
|
self.customized_output = None
|
|
|
|
|
|
class Controller(ABC):
|
|
|
|
def clone(self):
|
|
return copy.deepcopy(self)
|
|
|
|
def generate(self, prompt: str, **kwargs) -> ScaffoldingOutput:
|
|
task = GenerationTask.create_from_prompt(prompt)
|
|
|
|
yield from self.process([task], **kwargs)
|
|
|
|
return task.create_scaffolding_output()
|
|
|
|
def process(self, tasks: List[Task], **kwargs):
|
|
raise NotImplementedError
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class ParallelProcess:
|
|
controllers: List[Controller]
|
|
tasks_list: List[List[Task]]
|
|
kwargs_list: List[Mapping[str, Any]]
|
|
|
|
|
|
# Controller runs multiple generation tasks.
|
|
class NativeGenerationController(Controller):
|
|
|
|
class WorkerTag(Enum):
|
|
GENERATION = "generation"
|
|
|
|
def __init__(self, custom_sampling_params: dict = None):
|
|
super().__init__()
|
|
self.custom_sampling_params = copy.deepcopy(
|
|
custom_sampling_params) if custom_sampling_params else None
|
|
|
|
def process(self, tasks: List[Task], **kwargs):
|
|
for task in tasks:
|
|
task.worker_tag = self.WorkerTag.GENERATION
|
|
if self.custom_sampling_params:
|
|
for key, value in self.custom_sampling_params.items():
|
|
if hasattr(task, key) and getattr(task, key) is None:
|
|
setattr(task, key, value)
|
|
|
|
yield tasks
|
|
|
|
|
|
# Controller runs multiple reward tasks.
|
|
class NativeRewardController(Controller):
|
|
|
|
class WorkerTag(Enum):
|
|
REWARD = "reward"
|
|
|
|
def process(self, tasks: List[Task], **kwargs):
|
|
for task in tasks:
|
|
task.worker_tag = self.WorkerTag.REWARD
|
|
|
|
yield tasks
|
|
|
|
|
|
# Controller runs a single generation task with majority vote.
|
|
class MajorityVoteController(Controller):
|
|
|
|
def __init__(self,
|
|
generation_controller: Controller,
|
|
default_sample_num: int = 1):
|
|
super().__init__()
|
|
self.generation_controller = generation_controller
|
|
self.default_sample_num = default_sample_num
|
|
|
|
def clone(self):
|
|
# As we don't know the behavior of the generation_controller's clone method,
|
|
# we explicitly call clone method instead of simply using deepcopy.
|
|
generation_controller = self.generation_controller.clone()
|
|
return MajorityVoteController(generation_controller,
|
|
self.default_sample_num)
|
|
|
|
def process(self,
|
|
tasks: List[Task],
|
|
sample_num: int = 1,
|
|
generation_kwargs: dict = {},
|
|
majority_vote_kwargs: dict = {}):
|
|
sample_num = max(sample_num, self.default_sample_num)
|
|
generation_controllers = [
|
|
self.generation_controller.clone() for _ in range(sample_num)
|
|
]
|
|
tasks_list = [copy.deepcopy(tasks) for _ in range(sample_num)]
|
|
generation_kwargs_list = [
|
|
copy.deepcopy(generation_kwargs) for _ in range(sample_num)
|
|
]
|
|
|
|
yield ParallelProcess(generation_controllers, tasks_list,
|
|
generation_kwargs_list)
|
|
|
|
candidates = [tasks[0].output_str for tasks in tasks_list]
|
|
result = self.majority_vote(candidates, **majority_vote_kwargs)
|
|
|
|
assert isinstance(result, str), "majority_vote failed"
|
|
# The task returned by majority vote does not have output_tokens and logits.
|
|
tasks[0].output_str = result
|
|
|
|
def majority_vote(self, candidates: List[str], **kwargs) -> str:
|
|
return get_digit_majority_vote_result(candidates)
|
|
|
|
|
|
# Controller runs a single generation task with best of N.
|
|
class BestOfNController(Controller):
|
|
|
|
def __init__(self,
|
|
generation_controller: Controller,
|
|
reward_controller: Controller,
|
|
default_sample_num: int = 1):
|
|
super().__init__()
|
|
self.generation_controller = generation_controller
|
|
self.reward_controller = reward_controller
|
|
self.default_sample_num = default_sample_num
|
|
|
|
def clone(self):
|
|
generation_controller = self.generation_controller.clone()
|
|
reward_controller = self.reward_controller.clone()
|
|
return BestOfNController(generation_controller, reward_controller,
|
|
self.default_sample_num)
|
|
|
|
def process(self,
|
|
tasks: List[Task],
|
|
sample_num: int = 1,
|
|
generation_kwargs: dict = {},
|
|
reward_kwargs: dict = {},
|
|
select_best_kwargs: dict = {}):
|
|
sample_num = max(sample_num, self.default_sample_num)
|
|
generation_controllers = [
|
|
self.generation_controller.clone() for _ in range(sample_num)
|
|
]
|
|
self.generation_tasks_list = [tasks for _ in range(sample_num)]
|
|
generation_kwargs_list = [generation_kwargs for _ in range(sample_num)]
|
|
|
|
yield ParallelProcess(generation_controllers,
|
|
self.generation_tasks_list,
|
|
generation_kwargs_list)
|
|
|
|
# Some best of N algorithms create sample_num reward task lists while some just create one.
|
|
# We maintain generic here as much as possible.
|
|
self.reward_tasks_list = self.create_reward_tasks(
|
|
self.generation_tasks_list)
|
|
reward_paraller_num = len(self.reward_tasks_list)
|
|
reward_controllers = [
|
|
self.reward_controller.clone() for _ in range(reward_paraller_num)
|
|
]
|
|
reward_kwargs_list = [reward_kwargs for _ in range(reward_paraller_num)]
|
|
|
|
yield ParallelProcess(reward_controllers, self.reward_tasks_list,
|
|
reward_kwargs_list)
|
|
|
|
# may used for upper layer controllers
|
|
self.best_generation_task, self.best_reward_task = self.select_best(
|
|
self.generation_tasks_list, self.reward_tasks_list,
|
|
**select_best_kwargs)
|
|
tasks = self.best_generation_task
|
|
|
|
def select_best(self, generation_tasks: List[List[Task]],
|
|
reward_tasks: List[List[Task]],
|
|
**kwargs) -> Tuple[List[Task], List[Task]]:
|
|
assert len(generation_tasks[0]) == 1 and isinstance(generation_tasks[0][0], GenerationTask), \
|
|
"Should not use default select_best implementation for BestOfNController"
|
|
assert len(reward_tasks[0]) == 1 and isinstance(reward_tasks[0][0], RewardTask), \
|
|
"Should not use default select_best implementation for BestOfNController"
|
|
# select the best generation task and reward task
|
|
max_reward_value_index = reward_tasks.index(
|
|
max(reward_tasks, key=lambda x: x[0].reward_value))
|
|
return generation_tasks[max_reward_value_index], reward_tasks[
|
|
max_reward_value_index]
|