TensorRT-LLMs/cpp/tensorrt_llm/runtime/runtimeBuffers.cpp
Kaiyu Xie b2fd493c16
Update TensorRT-LLM (#349)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-10 22:30:31 +08:00

965 lines
38 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/runtime/runtimeBuffers.h"
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
#include "tensorrt_llm/common/stlUtils.h"
#include "tensorrt_llm/runtime/runtimeKernels.h"
#include "tensorrt_llm/runtime/tllmRuntime.h"
#include "tensorrt_llm/runtime/utils/sessionUtils.h"
#include <algorithm>
#include <iostream>
using namespace tensorrt_llm::runtime;
namespace tc = tensorrt_llm::common;
RuntimeBuffers::GenerationConfig RuntimeBuffers::GenerationConfig::fromInput(ITensor const& inputIds,
ITensor const& inputLengthsHost, bool const inputPacked, SizeType const beamWidth, SizeType const maxKvCacheLength,
SizeType const maxSequenceLength)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = static_cast<SizeType>(inputLengthsHost.getSize());
auto const* inputLengthsPtr = bufferCast<SizeType>(inputLengthsHost);
SizeType maxInputLength = *std::max_element(inputLengthsPtr, inputLengthsPtr + batchSize);
auto const& inputShape = inputIds.getShape();
SizeType inputLengthSum{0};
if (inputPacked)
{
inputLengthSum = std::accumulate(inputLengthsPtr, inputLengthsPtr + batchSize, 0);
TLLM_CHECK_WITH_INFO(inputShape.d[0] == 1 && inputShape.d[1] == inputLengthSum,
"Packed input must have shape [1, <sum of input lengths>].");
}
else
{
TLLM_CHECK_WITH_INFO(inputShape.d[0] == batchSize && inputShape.d[1] >= maxInputLength,
"Padded input must have shape [batch size, max input length]");
maxInputLength = inputShape.d[1];
}
TLLM_CHECK_WITH_INFO(maxInputLength < maxSequenceLength,
"Max input length is equal to or larger that maxSequenceLength given in setup. No new tokens can be "
"generated.");
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
return GenerationConfig{batchSize, beamWidth, maxInputLength, maxKvCacheLength, maxSequenceLength, inputLengthSum};
}
void RuntimeBuffers::clear()
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
contextLengthsHost = nullptr;
contextLengthsDevice = nullptr;
logits = nullptr;
sequenceLengths = nullptr;
pastKeyValueLengths = nullptr;
attentionMask = nullptr;
positionIds = nullptr;
lastTokenIds = nullptr;
requestTypes = nullptr;
presentKeysVals.clear();
presentKeysValsAlt.clear();
kvCacheBlockPointersHost = nullptr;
kvCacheBlockPointersDevice = nullptr;
cacheIndirectionDecoderInput = nullptr;
cacheIndirectionDecoderOutput = nullptr;
hiddenStates = nullptr;
allocated = false;
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::clearTensorMaps()
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
for (auto& buffer : inputBuffers)
buffer.clear();
for (auto& buffer : outputBuffers)
buffer.clear();
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::create(TllmRuntime& runtime, GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto& manager = runtime.getBufferManager();
auto& engine = runtime.getEngine();
if (worldConfig.isLastPipelineParallelRank())
{
auto const logitsType = engine.getTensorDataType("logits");
logits = manager.emptyTensor(MemoryType::kGPU, logitsType);
}
contextLengthsHost = manager.emptyTensor(MemoryType::kPINNED, nvinfer1::DataType::kINT32);
lastTokenIds = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
auto const localNbLayers = modelConfig.getNbLayers(worldConfig.getPipelineParallelism());
auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
nvinfer1::DataType kvDtype;
if (modelConfig.usePagedKvCache())
{
if (modelConfig.getQuantMode().hasFp8KvCache())
{
kvDtype = nvinfer1::DataType::kFP8;
}
else if (modelConfig.getQuantMode().hasInt8KvCache())
{
kvDtype = nvinfer1::DataType::kINT8;
}
else
{
kvDtype = modelConfig.getDataType();
}
}
else
{
kvDtype = modelConfig.getQuantMode().hasFp8KvCache()
? nvinfer1::DataType::kFP8
: engine.getTensorDataType(("present_key_value_" + std::to_string(firstLayerId)).c_str());
}
if (modelConfig.usePagedKvCache())
{
auto const kvCacheBlockPointersType
= engine.getTensorDataType(("kv_cache_block_pointers_" + std::to_string(firstLayerId)).c_str());
kvCacheBlockPointersHost = manager.emptyTensor(MemoryType::kCPU, kvCacheBlockPointersType);
kvCacheBlockPointersDevice = manager.emptyTensor(MemoryType::kGPU, kvCacheBlockPointersType);
}
else
{
presentKeysVals = utils::createBufferVector(runtime, localNbLayers, MemoryType::kGPU, kvDtype);
}
if (modelConfig.useGptAttentionPlugin())
{
pastKeyValueLengths = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
for (SizeType i = 0; i < modelConfig.getNbLayers(); ++i)
{
maxKvCacheLengths.emplace_back(manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32));
}
}
else
{
presentKeysValsAlt = utils::createBufferVector(runtime, localNbLayers, MemoryType::kGPU, kvDtype);
}
if (modelConfig.useGptAttentionPlugin())
{
requestTypes = manager.emptyTensor(MemoryType::kCPU, nvinfer1::DataType::kINT32);
}
cacheIndirectionDecoderInput = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
cacheIndirectionDecoderOutput = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
nbFinished = BufferManager::pinned(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
if (worldConfig.isPipelineParallel())
{
hiddenStates = manager.emptyTensor(MemoryType::kGPU, modelConfig.getDataType());
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::initFromInput(ITensor const& inputIds, TensorPtr const& inputLengths, bool inputPacked,
SizeType beamWidth, SizeType maxKvCacheLength, SizeType maxSequenceLength, BufferManager& manager)
{
contextLengthsDevice = inputLengths;
contextLengthsHost->reshape(inputLengths->getShape());
manager.copy(*contextLengthsDevice, *contextLengthsHost);
manager.getStream().synchronize(); // wait for context lengths to be copied to host
generationConfig = RuntimeBuffers::GenerationConfig::fromInput(
inputIds, *contextLengthsHost, inputPacked, beamWidth, maxKvCacheLength, maxSequenceLength);
}
void RuntimeBuffers::reshape(GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
auto const maxInputLength = generationConfig.maxInputLength;
auto const maxKvCacheLength = generationConfig.maxKvCacheLength;
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
logits->reshape(ITensor::makeShape({batchSize, 1, vocabSizePadded}));
}
lastTokenIds->reshape(ITensor::makeShape({batchSize}));
auto kvCacheReserve = ITensor::makeShape(
{batchSize, 2, modelConfig.getNbKvHeads(), maxKvCacheLength, modelConfig.getSizePerHead()});
auto kvCacheShape
= ITensor::makeShape({batchSize, 2, modelConfig.getNbKvHeads(), maxInputLength, modelConfig.getSizePerHead()});
if (modelConfig.usePagedKvCache())
{
auto const localNbLayers = modelConfig.getNbLayers(worldConfig.getPipelineParallelism());
auto const tokensPerBlock = modelConfig.getTokensPerBlock();
auto const maxBlocksPerSeq = (maxKvCacheLength + tokensPerBlock - 1) / tokensPerBlock;
// reserve batchSize * beamWidth and resize to batchSize
auto cacheBlockPointersShape = ITensor::makeShape({localNbLayers, batchSize * beamWidth, 2, maxBlocksPerSeq});
kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
cacheBlockPointersShape.d[1] = batchSize;
kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
}
else
{
utils::reshapeBufferVector(presentKeysVals, kvCacheReserve);
}
if (modelConfig.useGptAttentionPlugin())
{
pastKeyValueLengths->reshape(ITensor::makeShape({batchSize}));
for (SizeType i = 0; i < modelConfig.getNbLayers(); ++i)
{
maxKvCacheLengths[i]->reshape(ITensor::makeShape({1}));
}
requestTypes->reshape(ITensor::makeShape({batchSize}));
}
else
{
utils::reshapeBufferVector(presentKeysValsAlt, kvCacheReserve);
// present KV cache tensors will be reshaped by shape inference.
// reshape to the required shape here to make context batch slicing work correctly.
utils::reshapeBufferVector(presentKeysVals, kvCacheShape);
}
auto const cacheIndirShape = ITensor::makeShape({batchSize, beamWidth, maxKvCacheLength});
cacheIndirectionDecoderInput->reshape(cacheIndirShape);
cacheIndirectionDecoderOutput->reshape(cacheIndirShape);
if (worldConfig.isPipelineParallel())
{
// reserve max size
auto const maxNumTokens = std::max(beamWidth, maxInputLength);
auto const hiddenSize = modelConfig.getHiddenSize() * worldConfig.getTensorParallelism();
auto const hiddenStatesShape = ITensor::makeShape({batchSize, maxNumTokens, hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
allocated = true;
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::reset(BufferManager& manager)
{
clearTensorMaps();
manager.setZero(*cacheIndirectionDecoderInput);
manager.setZero(*cacheIndirectionDecoderOutput);
}
std::vector<RuntimeBuffers> RuntimeBuffers::split(
SizeType contextBatchSize, GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
std::vector<RuntimeBuffers> bufferSlices;
auto const generationBatchSize = generationConfig.batchSize;
bufferSlices.reserve(tc::ceilDiv(generationBatchSize, contextBatchSize));
if (contextBatchSize >= generationBatchSize)
{
bufferSlices.emplace_back(*this);
}
else
{
for (auto offset = 0; offset < generationBatchSize; offset += contextBatchSize)
{
auto const batchSize = std::min(contextBatchSize, generationBatchSize - offset);
auto& buffers = bufferSlices.emplace_back();
buffers.generationConfig = generationConfig;
buffers.generationConfig.batchSize = batchSize;
buffers.contextLengthsHost = ITensor::slice(contextLengthsHost, offset, batchSize);
buffers.contextLengthsDevice = ITensor::slice(contextLengthsDevice, offset, batchSize);
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
buffers.logits = ITensor::slice(logits, offset, batchSize);
}
buffers.lastTokenIds = ITensor::slice(lastTokenIds, offset, batchSize);
if (modelConfig.usePagedKvCache())
{
auto const& realCacheBlockPointersShape = kvCacheBlockPointersHost->getShape();
auto const localNbLayers = realCacheBlockPointersShape.d[0];
auto const maxBlocksPerSeq = realCacheBlockPointersShape.d[3];
// enable slicing by moving generationBatchSize to first dim
auto const fakeCacheBlockPointersShape
= ITensor::makeShape({generationBatchSize, localNbLayers, 2, maxBlocksPerSeq});
TensorPtr kvCacheBlockPointersHostView{
ITensor::view(kvCacheBlockPointersHost, fakeCacheBlockPointersShape)};
TensorPtr kvCacheBlockPointersDeviceView{
ITensor::view(kvCacheBlockPointersDevice, fakeCacheBlockPointersShape)};
// slice and reshape to correct shape
auto const cacheBlockPointersShape = ITensor::makeShape({localNbLayers, batchSize, 2, maxBlocksPerSeq});
buffers.kvCacheBlockPointersHost = ITensor::slice(kvCacheBlockPointersHostView, offset, batchSize);
buffers.kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
buffers.kvCacheBlockPointersDevice = ITensor::slice(kvCacheBlockPointersDeviceView, offset, batchSize);
buffers.kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
}
else
{
buffers.presentKeysVals = utils::sliceBufferVector(presentKeysVals, offset, batchSize);
}
if (modelConfig.useGptAttentionPlugin())
{
buffers.pastKeyValueLengths = ITensor::slice(pastKeyValueLengths, offset, batchSize);
buffers.maxKvCacheLengths = maxKvCacheLengths;
buffers.requestTypes = ITensor::slice(requestTypes, offset, batchSize);
}
else
{
buffers.presentKeysValsAlt = utils::sliceBufferVector(presentKeysValsAlt, offset, batchSize);
}
if (worldConfig.isPipelineParallel())
{
buffers.hiddenStates = ITensor::slice(hiddenStates, offset, batchSize);
}
buffers.cacheIndirectionDecoderOutput = ITensor::slice(cacheIndirectionDecoderOutput, offset, batchSize);
if (modelConfig.usePromptTuning())
{
auto const& ptuningEnabled = promptTuningParams.promptTuningEnabled;
buffers.promptTuningParams.promptTuningEnabled
= std::vector<bool>(ptuningEnabled.begin() + offset, ptuningEnabled.begin() + offset + batchSize);
buffers.promptTuningParams.tasks = ITensor::slice(promptTuningParams.tasks, offset, batchSize);
}
}
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
return bufferSlices;
}
void RuntimeBuffers::gatherLastTokenLogits(
BufferManager& manager, GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(modelConfig.computeContextLogits(),
"Gather last token logits is only necessary when context logits are computed");
if (worldConfig.isLastPipelineParallelRank())
{
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
auto const tiledTensorShape = ITensor::makeShape({batchSize, beamWidth, vocabSizePadded});
auto tiledTensor = std::shared_ptr(manager.gpu(tiledTensorShape, logits->getDataType()));
kernels::gatherLastTokenLogits(*tiledTensor, *logits, *lastTokenIds, manager.getStream());
manager.getStream().synchronize();
std::swap(logits, tiledTensor);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::copyAttentionMasks(std::vector<RuntimeBuffers> const& contextBatches, BufferManager& manager)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const maxInputLength = generationConfig.maxInputLength;
// TODO(rkobus) include tiling
attentionMask = manager.gpu(ITensor::makeShape({batchSize, maxInputLength}), nvinfer1::DataType::kINT32);
auto const numContextBatches = static_cast<SizeType>(contextBatches.size());
auto offset = 0;
for (auto contextBatchId = 0; contextBatchId < numContextBatches; ++contextBatchId)
{
auto& buffers = contextBatches.at(contextBatchId);
auto contextBatchSize = buffers.generationConfig.batchSize;
auto attentionMaskSlice = ITensor::slice(attentionMask, offset, contextBatchSize);
manager.copy(*buffers.attentionMask, *attentionMaskSlice);
offset += contextBatchSize;
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::tile(BufferManager& manager, GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const beamWidth = generationConfig.beamWidth;
TLLM_CHECK_WITH_INFO(beamWidth > 1, "Tiling is only necessary for beam search.");
// Note: If computeContextLogits is true, the copy/expansion is performed in gatherLastTokenLogits.
if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits())
{
// logits needs beamWidth in second dimension
auto logitsShape = logits->getShape();
logitsShape.d[1] *= beamWidth;
utils::tileBufferReplace(logits, beamWidth, manager);
logits->reshape(logitsShape);
}
utils::tileBufferReplace(contextLengthsDevice, beamWidth, manager);
if (modelConfig.useGptAttentionPlugin())
{
utils::tileCpuBufferReplace(contextLengthsHost, beamWidth, manager);
utils::tileCpuBufferReplace(pastKeyValueLengths, beamWidth, manager);
}
else
{
utils::tileBufferReplace(attentionMask, beamWidth, manager);
}
if (!modelConfig.usePagedKvCache())
{
for (auto& buffer : presentKeysVals)
utils::tileBufferReplace(buffer, beamWidth, manager);
for (auto& buffer : presentKeysValsAlt)
utils::tileBufferReplace(buffer, beamWidth, manager);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::postContextStep(std::vector<RuntimeBuffers> const& contextBuffers, BufferManager& manager,
GptModelConfig const& modelConfig, WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto const batchSize = generationConfig.batchSize;
auto const beamWidth = generationConfig.beamWidth;
if (modelConfig.useGptAttentionPlugin())
{
requestTypes->reshape(ITensor::makeShape({batchSize * beamWidth}));
auto hostRequestTypes = bufferCast<int32_t>(*requestTypes);
std::fill_n(hostRequestTypes, requestTypes->getSize(), 1);
}
else
{
copyAttentionMasks(contextBuffers, manager);
}
// TODO(rkobus) handle this more gracefully
positionIds = manager.emptyTensor(MemoryType::kGPU, nvinfer1::DataType::kINT32);
if (modelConfig.computeContextLogits())
{
gatherLastTokenLogits(manager, modelConfig, worldConfig);
}
if (beamWidth > 1)
{
tile(manager, modelConfig, worldConfig);
}
// use output lengths after context step
manager.copy(*contextLengthsDevice, *outputLengths);
sequenceLengths = ITensor::view(outputLengths);
sequenceLengths->reshape(ITensor::makeShape({batchSize * beamWidth}));
// no need to copy data in lastTokenIds because it is overwritten in prepareNextStep
lastTokenIds->reshape(ITensor::makeShape({batchSize * beamWidth}));
if (modelConfig.useGptAttentionPlugin() && modelConfig.usePagedKvCache())
{
auto cacheBlockPointersShape = kvCacheBlockPointersHost->getShape();
cacheBlockPointersShape.d[1] = batchSize * beamWidth;
kvCacheBlockPointersHost->reshape(cacheBlockPointersShape);
kvCacheBlockPointersDevice->reshape(cacheBlockPointersShape);
}
if (modelConfig.usePromptTuning())
{
std::vector<SizeType> reqBeamWidths(batchSize, beamWidth);
//// Note: reqPromptLenghts won't be used
std::vector<SizeType> reqPromptLengths;
// Copy the generationInput tasks to host
promptTuningTasksHost = manager.copyFrom(*promptTuningParams.tasks, MemoryType::kPINNED);
// Update the promptTuningParams tasks tensor
promptTuningParams.fillTasksTensor(promptTuningTasksHost, batchSize, 0, reqBeamWidths, reqPromptLengths,
manager, modelConfig.usePackedInput());
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
void RuntimeBuffers::prepareContextStep(TensorPtr const& inputIds, TokenIdType const padId, BufferManager& manager,
KvCacheManager const* kvCacheManager, SizeType firstBatchSlotIdx, GptModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto& stream = manager.getStream();
SizeType const batchSize = generationConfig.batchSize;
SizeType const maxInputLength = generationConfig.maxInputLength;
// use context lengths only in context step
sequenceLengths = contextLengthsDevice;
if (modelConfig.useGptAttentionPlugin())
{
auto pastKeyValueLengthsPtr = bufferCast<SizeType>(*pastKeyValueLengths);
TLLM_CHECK(pastKeyValueLengths->getSize() == static_cast<std::size_t>(batchSize));
std::fill_n(pastKeyValueLengthsPtr, batchSize, 0);
auto RequestTypesPtr = bufferCast<int32_t>(*requestTypes);
TLLM_CHECK(requestTypes->getSize() == static_cast<std::size_t>(batchSize));
std::fill_n(RequestTypesPtr, batchSize, 0);
// Set maxKvCacheLengths buffer to the same value currently.
for (auto layer = 0; layer < modelConfig.getNbLayers(); ++layer)
{
bufferCast<SizeType>(*maxKvCacheLengths[layer])[0] = generationConfig.maxKvCacheLength;
}
auto const& inputShape = inputIds->getShape();
auto const contextLengthsHostPtr = bufferCast<SizeType const>(*contextLengthsHost);
auto const modelVariant = modelConfig.getModelVariant();
if (modelVariant == GptModelConfig::ModelVariant::kGpt)
{
auto const inputSize = inputIds->getSize();
std::vector<SizeType> positionIdsVec(inputSize);
auto begin = std::begin(positionIdsVec);
for (SizeType i = 0; i < batchSize; ++i)
{
auto end = begin + (modelConfig.usePackedInput() ? contextLengthsHostPtr[i] : maxInputLength);
std::iota(begin, end, 0);
begin = end;
}
positionIds = manager.copyFrom(positionIdsVec, inputShape, MemoryType::kGPU);
}
else if (modelVariant == GptModelConfig::ModelVariant::kGlm)
{
auto const positionIdsVec = getPositionIdsContextPhaseGlm(batchSize, maxInputLength, contextLengthsHostPtr,
modelConfig.useGptAttentionPlugin(), modelConfig.usePackedInput());
if (modelConfig.usePackedInput())
{
int num_tokens = (int) positionIdsVec.size() / 2;
auto const positionIdsShape = ITensor::makeShape({1, 2, num_tokens});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
else
{
auto const positionIdsShape = ITensor::makeShape({batchSize, 2, maxInputLength});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
}
else
{
TLLM_THROW("Unsupported model variant");
}
if (worldConfig.isPipelineParallel())
{
auto const hiddenSize = hiddenStates->getShape().d[2];
auto const hiddenStatesShape = ITensor::makeShape({inputShape.d[0], inputShape.d[1], hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
if (modelConfig.usePromptTuning())
{
std::vector<SizeType> reqBeamWidths(batchSize, 1);
std::vector<SizeType> reqPromptLengths;
for (SizeType i = 0; i < batchSize; ++i)
{
reqPromptLengths.push_back(contextLengthsHostPtr[i]);
}
// Copy the generationInput tasks to host
promptTuningTasksHost = manager.copyFrom(*promptTuningParams.tasks, MemoryType::kPINNED);
// Update the tasks tensor
promptTuningParams.fillTasksTensor(promptTuningTasksHost, batchSize, batchSize, reqBeamWidths,
reqPromptLengths, manager, modelConfig.usePackedInput());
}
}
else
{
attentionMask = manager.copyFrom(*inputIds, MemoryType::kGPU);
kernels::invokeBuildAttentionMask(*attentionMask, padId, stream);
auto attentionMaskHost = manager.copyFrom(*attentionMask, MemoryType::kCPU);
auto const* attentionMaskData = reinterpret_cast<SizeType const*>(attentionMaskHost->data());
std::vector<SizeType> positionIdsVec(attentionMask->getSize());
for (SizeType i = 0; i < batchSize; ++i)
{
tc::stl_utils::exclusiveScan(attentionMaskData + i * maxInputLength,
attentionMaskData + (i + 1) * maxInputLength, std::begin(positionIdsVec) + i * maxInputLength, 0);
}
for (std::size_t i = 0; i < positionIdsVec.size(); ++i)
if (attentionMaskData[i] == 0)
positionIdsVec[i] = 1;
positionIds = manager.copyFrom(positionIdsVec, attentionMask->getShape(), MemoryType::kGPU);
}
if (modelConfig.useGptAttentionPlugin() && modelConfig.usePagedKvCache())
{
auto constexpr contextBeamWidth = 1;
kvCacheManager->getBlockPointersOfBatch(
*kvCacheBlockPointersHost, firstBatchSlotIdx, batchSize, contextBeamWidth);
manager.copy(*kvCacheBlockPointersHost, *kvCacheBlockPointersDevice);
}
if (modelConfig.usePackedInput())
{
kernels::invokeInclusiveSum(*lastTokenIds, *contextLengthsDevice, manager, stream);
}
else
{
manager.copy(*contextLengthsDevice, *lastTokenIds);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
RuntimeBuffers::TensorPtr RuntimeBuffers::prepareNextStep(SizeType const step, BufferManager& manager,
KvCacheManager* kvCacheManager, SizeType firstBatchSlotIdx, GptModelConfig const& modelConfig,
WorldConfig const& worldConfig)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
auto& stream = manager.getStream();
SizeType const batchSize = generationConfig.batchSize;
SizeType const beamWidth = generationConfig.beamWidth;
nvinfer1::Dims inputShape;
if (modelConfig.usePackedInput())
{
// batch in last dim
inputShape = ITensor::makeShape({1, batchSize * beamWidth});
}
else
{
// batch in first dim
inputShape = ITensor::makeShape({batchSize * beamWidth, 1});
}
auto nextInputIds = newTokens ? ITensor::view(newTokens, inputShape) : TensorPtr{};
if (modelConfig.useGptAttentionPlugin())
{
auto const contextLengthsHostPtr = bufferCast<SizeType const>(*contextLengthsHost);
auto const pastKeyValueLengthsPtr = bufferCast<SizeType>(*pastKeyValueLengths);
auto const tensorBatchSize = static_cast<SizeType>(pastKeyValueLengths->getSize());
SizeType const srcStride{modelConfig.useGptAttentionPlugin() ? 1 : beamWidth};
TLLM_CHECK(static_cast<std::size_t>(tensorBatchSize * srcStride) == contextLengthsDevice->getSize());
for (SizeType i = 0; i < tensorBatchSize; ++i)
{
pastKeyValueLengthsPtr[i] = contextLengthsHostPtr[i * srcStride] + step;
}
auto const modelVariant = modelConfig.getModelVariant();
if (modelVariant == GptModelConfig::ModelVariant::kGpt)
{
positionIds->reshape(inputShape);
manager.copy(*contextLengthsDevice, *positionIds);
kernels::invokeAdd(*positionIds, step, stream);
}
else if (modelVariant == GptModelConfig::ModelVariant::kGlm)
{
auto const positionIdsVec = getPositionIdsGenerationPhaseGlm(batchSize, beamWidth, step,
contextLengthsHostPtr, modelConfig.useGptAttentionPlugin(), modelConfig.usePackedInput());
if (modelConfig.usePackedInput())
{
auto const positionIdsShape = ITensor::makeShape({1, 2, batchSize * beamWidth});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
else
{
auto const positionIdsShape = ITensor::makeShape({batchSize * beamWidth, 2, 1});
positionIds = manager.copyFrom(positionIdsVec, positionIdsShape, MemoryType::kGPU);
}
}
else
{
TLLM_THROW("Unsupported model variant");
}
if (worldConfig.isPipelineParallel())
{
auto const hiddenSize = hiddenStates->getShape().d[2];
auto const hiddenStatesShape = ITensor::makeShape({inputShape.d[0], inputShape.d[1], hiddenSize});
hiddenStates->reshape(hiddenStatesShape);
}
}
else
{
auto const& shape = attentionMask->getShape();
auto const nbInputs = shape.d[0];
auto const oldLength = shape.d[1];
auto const newLength = oldLength + 1;
auto const newShape = ITensor::makeShape({nbInputs, newLength});
TensorPtr newAttentionMask = manager.gpu(newShape, attentionMask->getDataType());
kernels::invokeExtendAttentionMask(*newAttentionMask, *attentionMask, stream);
attentionMask = newAttentionMask;
auto attentionMaskHost = manager.copyFrom(*attentionMask, MemoryType::kCPU);
auto const* attentionMaskPtr = bufferCast<SizeType>(*attentionMaskHost);
// TODO old positionIds could be recovered to avoid scan
std::vector<SizeType> positionIdsVec(attentionMask->getSize());
for (SizeType i = 0; i < nbInputs; ++i)
{
tc::stl_utils::exclusiveScan(attentionMaskPtr + i * newLength, attentionMaskPtr + (i + 1) * newLength,
std::begin(positionIdsVec) + i * newLength, 0);
}
for (std::size_t i = 0; i < positionIdsVec.size(); ++i)
if (attentionMaskPtr[i] == 0)
positionIdsVec[i] = 1;
std::vector<SizeType> positionIdsEndVec(nbInputs);
for (SizeType i = 0; i < nbInputs; ++i)
positionIdsEndVec[i] = positionIdsVec[(i + 1) * newLength - 1];
positionIds = manager.copyFrom(positionIdsEndVec, ITensor::makeShape({nbInputs, 1}), MemoryType::kGPU);
}
if (modelConfig.usePagedKvCache())
{
for (auto batchIdx = firstBatchSlotIdx; batchIdx < firstBatchSlotIdx + batchSize; ++batchIdx)
{
kvCacheManager->addToken(batchIdx);
}
kvCacheManager->getBlockPointersOfBatch(*kvCacheBlockPointersHost, firstBatchSlotIdx, batchSize, beamWidth);
manager.copy(*kvCacheBlockPointersHost, *kvCacheBlockPointersDevice);
}
kernels::invokeFill(*lastTokenIds, 1, stream);
if (modelConfig.usePackedInput())
{
kernels::invokeInclusiveSum(*lastTokenIds, *lastTokenIds, manager, stream);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
return nextInputIds;
}
void RuntimeBuffers::getRuntimeBuffers(TensorMap& inputBuffers, TensorMap& outputBuffers, SizeType const step,
TensorPtr const& inputIds, TensorPtr const& commPtrs, GptModelConfig const& modelConfig,
WorldConfig const& worldConfig) const
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
inputBuffers.clear();
outputBuffers.clear();
if (worldConfig.isLastPipelineParallelRank())
{
// feed a view to TensorRT runtime so reshaping does not change logits buffer
outputBuffers.insert_or_assign("logits", ITensor::view(logits));
}
else
{
outputBuffers.insert_or_assign("hidden_states_output", hiddenStates);
}
if (worldConfig.isFirstPipelineParallelRank())
{
inputBuffers.insert_or_assign("input_ids", inputIds);
}
else
{
inputBuffers.insert_or_assign("hidden_states_input", hiddenStates);
}
inputBuffers.insert_or_assign("context_lengths", contextLengthsDevice);
if (!modelConfig.computeContextLogits())
{
inputBuffers.insert_or_assign("last_token_ids", lastTokenIds);
}
inputBuffers.insert_or_assign("position_ids", positionIds);
auto const localNbLayers = modelConfig.getNbLayers(worldConfig.getPipelineParallelism());
auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers;
if (modelConfig.useGptAttentionPlugin())
{
inputBuffers.insert_or_assign("cache_indirection", cacheIndirectionDecoderOutput);
inputBuffers.insert_or_assign("host_past_key_value_lengths", pastKeyValueLengths);
inputBuffers.insert_or_assign("host_request_types", requestTypes);
inputBuffers.insert_or_assign("sequence_length", sequenceLengths);
for (SizeType i = 0; i < modelConfig.getNbLayers(); ++i)
{
std::string name = "host_max_kv_cache_length_" + std::to_string(i);
inputBuffers.insert_or_assign(name, maxKvCacheLengths[i]);
}
if (modelConfig.usePackedInput())
{
inputBuffers.insert_or_assign("host_context_lengths", contextLengthsHost);
}
if (modelConfig.usePagedKvCache())
{
utils::insertTensorSlices(
inputBuffers, "kv_cache_block_pointers_", kvCacheBlockPointersDevice, firstLayerId);
}
else
{
utils::insertTensorVector(inputBuffers, "past_key_value_", presentKeysVals, firstLayerId);
utils::insertTensorVector(outputBuffers, "present_key_value_", presentKeysVals, firstLayerId);
}
}
else
{
inputBuffers.insert_or_assign("attention_mask", attentionMask);
inputBuffers.insert_or_assign("cache_indirection", cacheIndirectionDecoderOutput);
utils::insertTensorVector(
outputBuffers, "present_key_value_", (step % 2) ? presentKeysValsAlt : presentKeysVals, firstLayerId);
if (step == 0)
{
auto kvCacheShape = presentKeysValsAlt.at(0)->getShape();
kvCacheShape.d[3] = 0;
for (SizeType i = firstLayerId; i < firstLayerId + localNbLayers; ++i)
{
std::string name = "past_key_value_" + std::to_string(i);
TensorPtr tmp = ITensor::view(presentKeysValsAlt[i], kvCacheShape);
inputBuffers.insert_or_assign(name, std::move(tmp));
}
}
else
{
utils::insertTensorVector(
inputBuffers, "past_key_value_", (step % 2) ? presentKeysVals : presentKeysValsAlt, firstLayerId);
}
}
if (modelConfig.useCustomAllReduce() && worldConfig.getTensorParallelism())
{
inputBuffers.insert_or_assign("all_reduce_workspace", commPtrs);
}
if (modelConfig.usePromptTuning())
{
inputBuffers.insert_or_assign("prompt_embedding_table", promptTuningParams.embeddingTable);
inputBuffers.insert_or_assign("tasks", promptTuningParams.tasks);
inputBuffers.insert_or_assign("prompt_vocab_size", promptTuningParams.vocabSize);
}
TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}
std::vector<SizeType> RuntimeBuffers::getPositionIdsContextPhaseGlm(const SizeType& batchSize,
const SizeType& maxInputLength, const SizeType* pInputLengths, bool useGptAttentionPlugin, bool usePackedInput)
{
TLLM_CHECK(pInputLengths != nullptr);
std::vector<SizeType> positionIdsVec(1, 0);
if (useGptAttentionPlugin)
{
if (usePackedInput)
{
std::vector<int> pInputLengthsAcc = std::vector<int>(batchSize + 1, 0);
for (int i = 0; i < batchSize; ++i)
{
pInputLengthsAcc[i + 1] = pInputLengthsAcc[i] + pInputLengths[i];
}
auto const size = 1 * 2 * pInputLengthsAcc[batchSize];
positionIdsVec.resize(size, 0);
for (SizeType b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + pInputLengthsAcc[b];
auto const length = pInputLengths[b];
std::iota(pIdB, pIdB + length, 0);
pIdB[length - 1] = length - 2;
pIdB[length - 1 + pInputLengthsAcc[batchSize]] = 1;
}
}
else
{
auto const size = batchSize * 2 * maxInputLength;
positionIdsVec.resize(size, 0);
for (SizeType b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + b * 2 * maxInputLength;
auto const length = pInputLengths[b];
std::iota(pIdB, pIdB + length, 0);
pIdB[length - 1] = length - 2;
pIdB[length - 1 + maxInputLength] = 1;
}
}
}
else
{
TLLM_THROW("Unsupported model without GPT Attention Plugin");
}
return positionIdsVec;
}
std::vector<SizeType> RuntimeBuffers::getPositionIdsGenerationPhaseGlm(const SizeType& batchSize,
const SizeType& beamSize, const SizeType& step, const SizeType* pInputLengths, bool useGptAttentionPlugin,
bool usePackedInput)
{
TLLM_CHECK(pInputLengths != nullptr);
auto const size = 2 * batchSize * beamSize;
std::vector<SizeType> positionIdsVec(size, 0);
if (useGptAttentionPlugin)
{
if (usePackedInput)
{
for (SizeType b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + b * beamSize * 2;
auto const length = pInputLengths[b * beamSize];
for (SizeType bm = 0; bm < beamSize; ++bm)
{
pIdB[bm * 2 + 0] = length - 2;
pIdB[bm * 2 + 1] = step + 2;
}
}
}
else
{
for (SizeType b = 0; b < batchSize; ++b)
{
auto* pIdB = positionIdsVec.data() + b * beamSize * 2;
auto const length = pInputLengths[b * beamSize];
for (SizeType bm = 0; bm < beamSize; ++bm)
{
pIdB[bm * 2 + 0] = length - 2;
pIdB[bm * 2 + 1] = step + 2;
}
}
}
}
else
{
TLLM_THROW("Unsupported model without GPT Attention Plugin");
}
return positionIdsVec;
}