TensorRT-LLMs/examples/baichuan/build.py
Kaiyu Xie b2fd493c16
Update TensorRT-LLM (#349)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-10 22:30:31 +08:00

582 lines
23 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from pathlib import Path
import onnx
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from onnx import TensorProto, helper
from transformers import AutoConfig, AutoModelForCausalLM
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers.attention import PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import BaichuanForCausalLM, quantize_model
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
from weight import load_from_hf_baichuan, load_from_binary, parse_bin_config # isort:skip
# 2 routines: get_engine_name, serialize_engine
# are direct copy from gpt example, TODO: put in utils?
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--bin_model_dir', type=str, default=None)
parser.add_argument('--model_version',
type=str,
default='v1_13b',
choices=['v1_7b', 'v1_13b', 'v2_7b', 'v2_13b'])
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--logits_dtype',
type=str,
default='float32',
choices=['float16', 'float32'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=64000)
parser.add_argument('--n_layer', type=int, default=40)
parser.add_argument('--n_positions', type=int, default=4096)
parser.add_argument('--n_embd', type=int, default=5120)
parser.add_argument('--n_head', type=int, default=40)
parser.add_argument('--inter_size', type=int, default=13696)
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--max_batch_size', type=int, default=1)
parser.add_argument('--max_input_len', type=int, default=1024)
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument(
'--multi_block_mode',
default=False,
action='store_true',
help=
'Split long kv sequence into multiple blocks (applied to generation MHA kernels). \
It is beneifical when batchxnum_heads cannot fully utilize GPU.'
)
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument(
'--output_dir',
type=str,
default='baichuan_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=64,
help='Number of tokens per block in paged KV cache')
parser.add_argument(
'--max_num_tokens',
type=int,
default=None,
help='Define the max number of tokens supported by the engine')
parser.add_argument(
'--strongly_typed',
default=False,
action="store_true",
help=
'This option is introduced with trt 9.1.0.1+ and will reduce the building time significantly for fp8.'
)
args = parser.parse_args()
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if not args.remove_input_padding:
if args.use_gpt_attention_plugin:
logger.warning(
f"It is recommended to specify --remove_input_padding when using GPT attention plugin"
)
if args.use_inflight_batching:
if not args.use_gpt_attention_plugin:
args.use_gpt_attention_plugin = 'float16'
logger.info(
f"Using GPT attention plugin for inflight batching mode. Setting to default '{args.use_gpt_attention_plugin}'"
)
if not args.remove_input_padding:
args.remove_input_padding = True
logger.info(
"Using remove input padding for inflight batching mode.")
if not args.paged_kv_cache:
args.paged_kv_cache = True
logger.info("Using paged KV cache for inflight batching mode.")
if args.max_num_tokens is not None:
assert args.enable_context_fmha
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
args.quant_mode = QuantMode.use_weight_only(
args.weight_only_precision == 'int4')
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
if args.model_dir is not None:
hf_config = AutoConfig.from_pretrained(args.model_dir,
trust_remote_code=True)
# override the inter_size for Baichuan
args.inter_size = hf_config.intermediate_size
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
args.n_layer = hf_config.num_hidden_layers
if args.model_version == 'v1_7b' or args.model_version == 'v2_7b':
args.n_positions = hf_config.max_position_embeddings
else:
args.n_positions = hf_config.model_max_length
args.vocab_size = hf_config.vocab_size
args.hidden_act = hf_config.hidden_act
elif args.bin_model_dir is not None:
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, _ = parse_bin_config(
Path(args.bin_model_dir) / "config.ini")
args.inter_size = inter_size
args.n_embd = n_embd
args.n_head = n_head
args.n_layer = n_layer
args.n_positions = n_positions
args.vocab_size = vocab_size
args.hidden_act = hidden_act
else:
# default values are based on v1_13b, change them based on model_version
if args.model_version == 'v1_7b':
args.inter_size = 11008
args.n_embd = 4096
args.n_head = 32
args.n_layer = 32
args.n_positions = 4096
args.vocab_size = 64000
args.hidden_act = 'silu'
elif args.model_version == 'v2_7b':
args.inter_size = 11008
args.n_embd = 4096
args.n_head = 32
args.n_layer = 32
args.n_positions = 4096
args.vocab_size = 125696
args.hidden_act = 'silu'
elif args.model_version == 'v2_13b':
args.inter_size = 13696
args.n_embd = 5120
args.n_head = 40
args.n_layer = 40
args.n_positions = 4096
args.vocab_size = 125696
args.hidden_act = 'silu'
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
dtype = str_dtype_to_trt(args.dtype)
mapping = Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size)
if args.model_version == 'v1_7b' or args.model_version == 'v2_7b':
position_embedding_type = PositionEmbeddingType.rope_gpt_neox
else:
position_embedding_type = PositionEmbeddingType.alibi
# Initialize Module
tensorrt_llm_baichuan = BaichuanForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=None,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
position_embedding_type=position_embedding_type,
dtype=dtype,
mlp_hidden_size=args.inter_size,
mapping=mapping,
quant_mode=args.quant_mode,
logits_dtype=args.logits_dtype)
if args.use_smooth_quant or args.use_weight_only:
tensorrt_llm_baichuan = quantize_model(tensorrt_llm_baichuan,
args.quant_mode)
if args.model_dir is not None:
logger.info(
f'Loading HF Baichuan {args.model_version} ... from {args.model_dir}'
)
tik = time.time()
hf_baichuan = AutoModelForCausalLM.from_pretrained(
args.model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu"
}, # Load to CPU memory
torch_dtype="auto",
trust_remote_code=True)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF Baichuan {args.model_version} loaded. Total time: {t}')
load_from_hf_baichuan(tensorrt_llm_baichuan,
hf_baichuan,
args.model_version,
rank,
args.world_size,
dtype=args.dtype)
del hf_baichuan
elif args.bin_model_dir is not None:
load_from_binary(tensorrt_llm_baichuan,
args.bin_model_dir,
args.model_version,
mapping,
fp16=(args.dtype == 'float16'),
multi_query_mode=False)
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_rmsnorm_quantization_plugin(dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.multi_block_mode:
network.plugin_config.enable_mmha_multi_block_mode()
if args.use_weight_only:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache(args.tokens_per_block)
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_baichuan.named_parameters())
# Forward
inputs = tensorrt_llm_baichuan.prepare_inputs(args.max_batch_size,
args.max_input_len,
args.max_output_len, True,
args.max_beam_width,
args.max_num_tokens)
tensorrt_llm_baichuan(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_baichuan.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
tensorrt_llm.graph_rewriting.optimize(network)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
tensorrt_llm.tools.cleanup(network, tensorrt_llm_baichuan)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
tensorrt_llm.logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
model_name = 'baichuan'
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
# NOTE(nkorobov): when only int8 kv cache is used together with paged kv cache no int8 tensors are exposed to TRT
int8_trt_flag = args.quant_mode.has_act_or_weight_quant() or (
not args.paged_kv_cache and args.quant_mode.has_int8_kv_cache())
builder_config = builder.create_builder_config(
name=model_name,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
max_num_tokens=args.max_num_tokens,
int8=int8_trt_flag,
quant_mode=args.quant_mode,
strongly_typed=args.strongly_typed)
engine_name = get_engine_name(model_name, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
del engine
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
logger.set_level(args.log_level)
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')