TensorRT-LLMs/examples/baichuan/weight.py
Kaiyu Xie b2fd493c16
Update TensorRT-LLM (#349)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-10 22:30:31 +08:00

506 lines
23 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from pathlib import Path
import numpy as np
import torch
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import BaichuanForCausalLM
from tensorrt_llm.quantization import QuantMode
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx].copy())
else:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx].copy())
def load_from_hf_baichuan(tensorrt_llm_baichuan,
hf_baichuan,
model_version,
rank=0,
tensor_parallel=1,
dtype="float32"):
assert model_version is not None
tensorrt_llm.logger.info(
f'Loading weights from HF Baichuan {model_version}...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_baichuan, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
model_params = dict(hf_baichuan.named_parameters())
for k, v in model_params.items():
torch_dtype = str_dtype_to_torch(dtype)
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if 'model.embed_tokens.weight' in k:
tensorrt_llm_baichuan.vocab_embedding.weight.value = v
elif 'model.norm.weight' in k:
tensorrt_llm_baichuan.ln_f.weight.value = v
elif 'lm_head.weight' in k:
if model_version.startswith('v2'):
# baichuan v2 models use NormHead
tensorrt_llm.logger.info(
f'Normalizing lm_head.weight for {model_version}')
original_v = model_params[k]
v = torch_to_numpy(
torch.nn.functional.normalize(original_v).to(
torch_dtype).detach().cpu())
tensorrt_llm_baichuan.lm_head.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if idx >= tensorrt_llm_baichuan.num_layers:
continue
if 'input_layernorm.weight' in k:
tensorrt_llm_baichuan.layers[
idx].input_layernorm.weight.value = v
elif 'post_attention_layernorm.weight' in k:
dst = tensorrt_llm_baichuan.layers[idx].post_layernorm.weight
dst.value = v
elif 'self_attn.W_pack.weight' in k:
dst = tensorrt_llm_baichuan.layers[idx].attention.qkv.weight
q_emb = v.shape[0] // 3
model_emb = v.shape[1]
v = v.reshape(3, q_emb, model_emb)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (q_emb // tensor_parallel),
model_emb)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
idx].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'self_attn.o_proj.weight' in k:
dst = tensorrt_llm_baichuan.layers[idx].attention.dense.weight
split_v = split(v, tensor_parallel, rank, dim=1)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
idx].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.up_proj.weight' in k:
dst = tensorrt_llm_baichuan.layers[idx].mlp.gate.weight
split_v = split(v, tensor_parallel, rank, dim=0)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
idx].mlp.gate.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.down_proj.weight' in k:
dst = tensorrt_llm_baichuan.layers[idx].mlp.proj.weight
split_v = split(v, tensor_parallel, rank, dim=1)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
idx].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.gate_proj.weight' in k:
dst = tensorrt_llm_baichuan.layers[idx].mlp.fc.weight
split_v = split(v, tensor_parallel, rank, dim=0)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
idx].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def parse_bin_config(ini_file):
baichuan_config = configparser.ConfigParser()
baichuan_config.read(ini_file)
n_embd = baichuan_config.getint('baichuan', 'hidden_size')
n_head = baichuan_config.getint('baichuan', 'num_attention_heads')
n_kv_head = n_head
n_layer = baichuan_config.getint('baichuan', 'num_hidden_layers')
if baichuan_config.has_option('baichuan', 'max_position_embeddings'):
n_positions = baichuan_config.getint('baichuan',
'max_position_embeddings')
else:
n_positions = baichuan_config.getint('baichuan', 'model_max_length')
vocab_size = baichuan_config.getint('baichuan', 'vocab_size')
hidden_act = baichuan_config.get('baichuan', 'hidden_act')
inter_size = baichuan_config.getint('baichuan',
'intermediate_size',
fallback=None)
if inter_size is None:
inter_size = 4 * n_embd
return n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def load_from_binary(tensorrt_llm_baichuan: BaichuanForCausalLM,
dir_path,
model_version,
mapping=Mapping(),
fp16=False,
multi_query_mode=False):
tensorrt_llm.logger.info('Loading weights from binary...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_baichuan, 'quant_mode', QuantMode(0))
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size, n_kv_head = parse_bin_config(
Path(dir_path) / 'config.ini')
np_dtype = np.float16 if fp16 else np.float32
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
if is_qkv and not per_channel:
t = fromfile(dir_path,
f"{basename}scale_w_quant_orig.{rank}.{suffix}",
col_shape, np.float32)
else:
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
if is_qkv:
t = fromfile(dir_path,
f"{basename}scale_y_accum_quant.{rank}.{suffix}",
col_shape, np.float32)
else:
t = fromfile(dir_path,
f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
def set_smoother(module, dir_path, base_name, shape, rank):
suffix = f"{rank}.bin"
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
np.float32)
module.smoother.value = t
# Determine the quantization mode.
quant_mode = getattr(tensorrt_llm_baichuan, "quant_mode", QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
use_weight_only = quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
# Debug
suffix = gen_suffix(mapping.tp_rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
if mapping.is_first_pp_rank():
tensorrt_llm_baichuan.vocab_embedding.weight.value = (fromfile(
dir_path, 'vocab_embedding.weight.bin', [vocab_size, n_embd]))
if mapping.is_last_pp_rank():
tensorrt_llm_baichuan.ln_f.weight.value = (fromfile(
dir_path, 'ln_f.weight.bin'))
# share input embedding
lm_head_weight = fromfile(dir_path, 'lm_head.weight.bin',
[vocab_size, n_embd])
if model_version.startswith('v2'):
# baichuan v2 models use NormHead
tensorrt_llm.logger.info(
f'Normalizing lm_head.weight for {model_version}')
lm_head_weight = lm_head_weight / np.linalg.norm(
lm_head_weight, axis=1, keepdims=True)
if vocab_size % mapping.tp_size != 0:
# padding
vocab_size_padded = tensorrt_llm_baichuan.lm_head.out_features * mapping.tp_size
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
if mapping.is_last_pp_rank():
tensorrt_llm_baichuan.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, mapping.tp_size, mapping.tp_rank))
layers_range = list(
range(mapping.pp_rank * tensorrt_llm_baichuan.num_layers,
(mapping.pp_rank + 1) * tensorrt_llm_baichuan.num_layers, 1))
for i in layers_range:
n_groups = n_head // n_kv_head
c_attn_out_dim = (
3 * n_embd // mapping.tp_size) if not multi_query_mode else (
n_embd // mapping.tp_size +
(n_embd // n_head * n_groups) // mapping.tp_size * 2)
idx = i - mapping.pp_rank * tensorrt_llm_baichuan.num_layers
tensorrt_llm_baichuan.layers[idx].input_layernorm.weight.value = (
fromfile(dir_path,
'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[n_embd, c_attn_out_dim], w_type)
if t is not None:
dst = tensorrt_llm_baichuan.layers[idx].attention.qkv.weight
if use_smooth_quant:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(
tensorrt_llm_baichuan.layers[idx].attention.qkv,
tensorrt_llm_baichuan.layers[idx].input_layernorm.
scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, c_attn_out_dim],
quant_per_token_dyn,
quant_per_channel,
rank=mapping.tp_rank,
is_qkv=True)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
i].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_baichuan.layers[idx].attention.dense.weight
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd // mapping.tp_size, n_embd], w_type)
if use_smooth_quant:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dense_scale = getattr(tensorrt_llm_baichuan.layers[idx].attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_baichuan.layers[idx].attention.dense, dense_scale,
dir_path, 'model.layers.' + str(i) + '.attention.dense.',
[1, n_embd], quant_per_token_dyn, quant_per_channel)
set_smoother(tensorrt_llm_baichuan.layers[idx].attention.dense,
dir_path,
'model.layers.' + str(i) + '.attention.dense',
[1, n_embd // mapping.tp_size], mapping.tp_rank)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[
i].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_baichuan.layers[idx].post_layernorm.weight
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) + '.post_layernorm.weight.bin')
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.fc.weight.' + suffix,
[n_embd, inter_size // mapping.tp_size], w_type)
if use_smooth_quant:
tensorrt_llm_baichuan.layers[
idx].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(
tensorrt_llm_baichuan.layers[idx].mlp.fc,
tensorrt_llm_baichuan.layers[idx].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.fc.',
[1, inter_size // mapping.tp_size],
quant_per_token_dyn,
quant_per_channel,
rank=mapping.tp_rank)
elif use_weight_only:
dst = tensorrt_llm_baichuan.layers[i].mlp.fc.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[i].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_baichuan.layers[
idx].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.gate.weight.' + suffix,
[n_embd, inter_size // mapping.tp_size], w_type)
if use_smooth_quant:
tensorrt_llm_baichuan.layers[
idx].mlp.gate.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
set_smoothquant_scale_factors(
tensorrt_llm_baichuan.layers[idx].mlp.gate,
tensorrt_llm_baichuan.layers[idx].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.gate.',
[1, inter_size // mapping.tp_size],
quant_per_token_dyn,
quant_per_channel,
rank=mapping.tp_rank)
elif use_weight_only:
dst = tensorrt_llm_baichuan.layers[i].mlp.gate.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[i].mlp.gate.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_baichuan.layers[
idx].mlp.gate.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.proj.weight.' + suffix,
[inter_size // mapping.tp_size, n_embd], w_type)
if use_smooth_quant:
tensorrt_llm_baichuan.layers[
idx].mlp.proj.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
proj_scale = getattr(tensorrt_llm_baichuan.layers[idx].mlp,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_baichuan.layers[idx].mlp.proj, proj_scale,
dir_path, 'model.layers.' + str(i) + '.mlp.proj.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
set_smoother(tensorrt_llm_baichuan.layers[idx].mlp.proj, dir_path,
'model.layers.' + str(i) + '.mlp.proj',
[1, inter_size // mapping.tp_size], mapping.tp_rank)
elif use_weight_only:
dst = tensorrt_llm_baichuan.layers[i].mlp.proj.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_baichuan.layers[i].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_baichuan.layers[idx].mlp.proj.weight.value = (
np.ascontiguousarray(np.transpose(t, [1, 0])))
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
tensorrt_llm_baichuan.layers[
idx].attention.kv_orig_quant_scale.value = 1.0 / t
tensorrt_llm_baichuan.layers[
idx].attention.kv_quant_orig_scale.value = t
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')