TensorRT-LLMs/examples/falcon/run.py
Kaiyu Xie b2fd493c16
Update TensorRT-LLM (#349)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-11-10 22:30:31 +08:00

237 lines
9.7 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
import json
from pathlib import Path
import numpy as np
import torch
from transformers import PreTrainedTokenizerFast
import tensorrt_llm
from tensorrt_llm.quantization import QuantMode
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from build import get_engine_name # isort:skip
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument('--max_kv_cache_len',
type=int,
default=None,
help='The max kv cache length. \
If the final sequence length exceeds the kv cache length, we will enable cyclic kv cache. \
If it is set to None, we will use the max sequence length.')
parser.add_argument('--log_level', type=str, default='error')
parser.add_argument('--engine_dir', type=str, default='falcon_outputs')
parser.add_argument('--tokenizer_dir',
type=str,
default="tiiuae/falcon-rw-1b",
help="Tokenizer path or name.")
parser.add_argument('--input_text',
type=str,
default='Born in north-east France, Soyer trained as a')
parser.add_argument(
'--input_tokens',
dest='input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--debug', action='store_true')
return parser.parse_args()
def read_config(config_path: Path):
with config_path.open('r') as f:
config = json.load(f)
builder_config = config['builder_config']
dtype = builder_config['precision']
tp_size = builder_config['tensor_parallel']
pp_size = builder_config['pipeline_parallel']
world_size = tp_size * pp_size
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size '\
f'({tensorrt_llm.mpi_world_size()})'
num_heads = builder_config['num_heads'] // tp_size
num_kv_heads = builder_config.get('num_kv_heads', num_heads)
num_kv_heads = (num_kv_heads + tp_size - 1) // tp_size
hidden_size = builder_config['hidden_size'] // tp_size
vocab_size = builder_config['vocab_size']
num_layers = builder_config['num_layers']
quant_mode = QuantMode(builder_config['quant_mode'])
plugin_config = config['plugin_config']
use_gpt_attention_plugin = plugin_config['gpt_attention_plugin']
paged_kv_cache = plugin_config['paged_kv_cache']
tokens_per_block = plugin_config['tokens_per_block']
remove_input_padding = plugin_config['remove_input_padding']
use_custom_all_reduce = plugin_config.get('use_custom_all_reduce', False)
model_config = ModelConfig(num_heads=num_heads,
num_kv_heads=num_kv_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
remove_input_padding=remove_input_padding,
quant_mode=quant_mode,
dtype=dtype,
use_custom_all_reduce=use_custom_all_reduce)
return model_config, tp_size, pp_size, world_size, dtype
def parse_input(input_text: str, input_file: str, tokenizer, pad_id: int,
remove_input_padding: bool):
input_tokens = []
if input_file is None:
input_tokens.append(
tokenizer.encode(input_text, add_special_tokens=False))
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_tokens.append(np.array(line, dtype='int32'))
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
row = row[row != pad_id]
input_tokens.append(row)
else:
print('Input file format not supported.')
raise SystemExit
input_ids = None
input_lengths = torch.tensor([len(x) for x in input_tokens],
dtype=torch.int32,
device='cuda')
if remove_input_padding:
input_ids = np.concatenate(input_tokens)
input_ids = torch.tensor(input_ids, dtype=torch.int32,
device='cuda').unsqueeze(0)
else:
input_ids = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(input_tokens, dtype=torch.int32),
pad_id).cuda()
return input_ids, input_lengths
def print_output(output_ids, input_lengths, max_output_len, tokenizer,
output_csv, output_npy):
num_beams = output_ids.size(1)
if output_csv is None and output_npy is None:
for b in range(input_lengths.size(0)):
inputs = output_ids[b][0][:input_lengths[b]].tolist()
input_text = tokenizer.decode(inputs)
print(f'Input: \"{input_text}\"')
for beam in range(num_beams):
output_begin = input_lengths[b]
output_end = input_lengths[b] + max_output_len
outputs = output_ids[b][beam][output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output: \"{output_text}\"')
output_ids = output_ids.reshape((-1, output_ids.size(2)))
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids.tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
np.save(output_file, outputs)
def main():
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
engine_dir = Path(args.engine_dir)
model_config, tp_size, pp_size, world_size, dtype = read_config(
engine_dir / 'config.json')
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=tp_size,
pp_size=pp_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('falcon', dtype, tp_size, pp_size,
runtime_rank)
serialize_path = engine_dir / engine_name
tokenizer = PreTrainedTokenizerFast.from_pretrained(args.tokenizer_dir)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
input_ids, input_lengths = parse_input(args.input_text, args.input_file,
tokenizer, tokenizer.eos_token_id,
model_config.remove_input_padding)
sampling_config = SamplingConfig(end_id=tokenizer.eos_token_id,
pad_id=tokenizer.pad_token_id,
num_beams=args.num_beams)
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping,
debug_mode=args.debug)
decoder.setup(input_ids.size(0),
max_context_length=input_ids.size(1),
max_new_tokens=args.max_output_len,
beam_width=args.num_beams,
max_kv_cache_length=args.max_kv_cache_len)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
torch.cuda.synchronize()
if runtime_rank == 0:
print_output(output_ids, input_lengths, args.max_output_len, tokenizer,
args.output_csv, args.output_npy)
if __name__ == '__main__':
main()