mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
325 lines
11 KiB
Python
325 lines
11 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import time
|
|
from functools import partial
|
|
from typing import Literal, Optional, Union
|
|
|
|
import tensorrt as trt
|
|
|
|
try:
|
|
import psutil
|
|
except ImportError:
|
|
psutil = None
|
|
try:
|
|
import pynvml
|
|
except ImportError:
|
|
pynvml = None
|
|
import traceback
|
|
|
|
import torch
|
|
|
|
from tensorrt_llm.builder import _is_building
|
|
from tensorrt_llm.logger import logger
|
|
|
|
|
|
class Timer:
|
|
|
|
def __init__(self):
|
|
self._start_times = {}
|
|
self._total_elapsed_times = {}
|
|
|
|
def start(self, tag):
|
|
self._start_times[tag] = time.time()
|
|
|
|
def stop(self, tag) -> float:
|
|
elapsed_time = time.time() - self._start_times[tag]
|
|
if tag not in self._total_elapsed_times:
|
|
self._total_elapsed_times[tag] = 0
|
|
self._total_elapsed_times[tag] += elapsed_time
|
|
return elapsed_time
|
|
|
|
def elapsed_time_in_sec(self, tag) -> float:
|
|
if tag not in self._total_elapsed_times:
|
|
return None
|
|
return self._total_elapsed_times[tag]
|
|
|
|
def reset(self):
|
|
self._start_times.clear()
|
|
self._total_elapsed_times.clear()
|
|
|
|
def summary(self):
|
|
logger.info('Profile Results')
|
|
for tag, elapsed_time in self._total_elapsed_times.items():
|
|
logger.info(f' - {tag.ljust(30, ".")}: {elapsed_time:.6f} (sec)')
|
|
|
|
|
|
_default_timer = Timer()
|
|
|
|
|
|
def start(tag):
|
|
_default_timer.start(tag)
|
|
|
|
|
|
def stop(tag):
|
|
return _default_timer.stop(tag)
|
|
|
|
|
|
def elapsed_time_in_sec(tag):
|
|
return _default_timer.elapsed_time_in_sec(tag)
|
|
|
|
|
|
def reset():
|
|
_default_timer.reset()
|
|
|
|
|
|
def summary():
|
|
_default_timer.summary()
|
|
|
|
|
|
_pynvml_initialized = False
|
|
|
|
|
|
def initialize_pynvml():
|
|
global _pynvml_initialized
|
|
if pynvml is not None and not _pynvml_initialized:
|
|
pynvml.nvmlInit()
|
|
_pynvml_initialized = True
|
|
|
|
|
|
def finalize_pynvml():
|
|
global _pynvml_initialized
|
|
if pynvml is not None and _pynvml_initialized:
|
|
pynvml.nvmlInvmlShutdownnit()
|
|
_pynvml_initialized = False
|
|
|
|
|
|
class MemoryMonitor:
|
|
|
|
TAG = '[MemUsage]'
|
|
UnitType = Literal['GiB', 'MiB', 'KiB']
|
|
units = {'GiB': 1 << 30, 'MiB': 1 << 20, 'KiB': 1 << 10}
|
|
# For convenience.
|
|
_rename_map = {'GB': 'GiB', 'MB': 'MiB', 'KiB': 'KB'}
|
|
|
|
_maybe_warned = False
|
|
|
|
def __init__(self):
|
|
# bytes
|
|
self._peak_host_memory = 0
|
|
self._peak_device_memory = 0
|
|
self._check_required_packages()
|
|
|
|
self.device_handles = {}
|
|
initialize_pynvml()
|
|
|
|
if pynvml.__version__ < '11.5.0':
|
|
logger.warning(f'Found pynvml=={pynvml.__version__}. Please use '
|
|
f'pynvml>=11.5.0 to get accurate memory usage')
|
|
# Support legacy pynvml. Note that an old API could return
|
|
# wrong GPU memory usage.
|
|
self._device_mem__fn = pynvml.nvmlDeviceGetMemoryInfo
|
|
else:
|
|
self._device_mem__fn = partial(pynvml.nvmlDeviceGetMemoryInfo,
|
|
version=pynvml.nvmlMemory_v2)
|
|
|
|
@classmethod
|
|
def _check_required_packages(cls):
|
|
if cls._maybe_warned:
|
|
return
|
|
if psutil is None:
|
|
# Warning once.
|
|
logger.warning(
|
|
"A required package 'psutil' is not installed. Will not "
|
|
"monitor the host memory usages. Please install the package "
|
|
"first, e.g, 'pip install psutil'.")
|
|
return
|
|
if pynvml is None:
|
|
# Warning once.
|
|
logger.warning(
|
|
"A required package 'psutil' is not installed. Will not "
|
|
"monitor the host memory usages. Please install the package "
|
|
"first, e.g, 'pip install pynvml>=11.5.0'.")
|
|
cls._maybe_warned = True
|
|
|
|
def host_memory_info(self) -> int:
|
|
process = psutil.Process()
|
|
# USS reports the amount of memory that would be freed if the process
|
|
# was terminated right now.
|
|
# https://psutil.readthedocs.io/en/latest/index.html#psutil.Process.memory_full_info
|
|
vmem = psutil.virtual_memory()
|
|
total_mem = vmem.total
|
|
free_mem = vmem.available
|
|
alloc_mem = process.memory_full_info().uss
|
|
if alloc_mem > self._peak_host_memory:
|
|
self._peak_host_memory = alloc_mem
|
|
return alloc_mem, free_mem, total_mem
|
|
|
|
def device_memory_info(
|
|
self,
|
|
device: Optional[Union[torch.device, int]] = None,
|
|
) -> int:
|
|
index = device.index if isinstance(device, torch.device) else device
|
|
if index not in self.device_handles:
|
|
handle = pynvml.nvmlDeviceGetHandleByIndex(index)
|
|
self.device_handles[index] = handle
|
|
mem_info = self._device_mem__fn(self.device_handles[index])
|
|
if mem_info.used > self._peak_device_memory:
|
|
self._peak_device_memory = mem_info.used
|
|
return mem_info.used, mem_info.free, mem_info.total
|
|
|
|
@staticmethod
|
|
def _normalize_unit_name(unit: str):
|
|
# Rename GB -> GiB.
|
|
return {'GB': 'GiB', 'MB': 'MiB', 'KiB': 'KB'}[unit]
|
|
|
|
@classmethod
|
|
def _format(cls, mem_bytes: int, unit: UnitType) -> str:
|
|
if unit not in cls.units:
|
|
unit = cls._rename_map[unit]
|
|
mem_usage = float(mem_bytes) / cls.units[unit]
|
|
return f'{mem_usage:.4f} ({unit})'
|
|
|
|
@classmethod
|
|
def _print_message(cls, msg: str, tag: Optional[str] = None):
|
|
if tag:
|
|
msg = f'{tag} - {msg}'
|
|
logger.info(f'{cls.TAG} {msg}')
|
|
|
|
def print_host_memory_usage(self,
|
|
tag: Optional[str] = None,
|
|
unit: UnitType = 'GiB'):
|
|
if psutil is None:
|
|
return
|
|
alloc_mem, _, _ = self.host_memory_info()
|
|
msg = f'Allocated Host Memory {self._format(alloc_mem, unit)}'
|
|
self._print_message(msg, tag)
|
|
|
|
def print_device_memory_usage(
|
|
self,
|
|
tag: Optional[str] = None,
|
|
unit: UnitType = 'GB',
|
|
device: Optional[Union[torch.device, int]] = None,
|
|
):
|
|
alloc_mem, _, _ = self.device_memory_info(device)
|
|
msg = f'Allocated Device Memory {self._format(alloc_mem, unit)}'
|
|
self._print_message(msg, tag)
|
|
|
|
def print_memory_usage(
|
|
self,
|
|
tag: Optional[str] = None,
|
|
unit: UnitType = 'GiB',
|
|
device: Optional[Union[torch.device, int]] = None,
|
|
):
|
|
alloc_host_mem, _, _ = self.host_memory_info()
|
|
alloc_device_mem, _, _ = self.device_memory_info(device=device)
|
|
msg = f'Allocated Memory: Host {self._format(alloc_host_mem, unit)} '\
|
|
f'Device {self._format(alloc_device_mem, unit)}'
|
|
self._print_message(msg, tag)
|
|
|
|
def print_peak_memory_usage(self, unit: UnitType = 'GiB'):
|
|
self._print_message(
|
|
f'Peak Memory Usage: '
|
|
f'Host {self._format(self._peak_host_memory, unit)} '
|
|
f'Device {self._format(self._peak_device_memory, unit)}')
|
|
|
|
|
|
if psutil is not None and pynvml is not None:
|
|
_default_memory_monitor = MemoryMonitor()
|
|
else:
|
|
_default_memory_monitor = None
|
|
|
|
|
|
def host_memory_info():
|
|
if _default_memory_monitor is not None:
|
|
return _default_memory_monitor.host_memory_info()
|
|
|
|
|
|
def device_memory_info(device: Optional[Union[torch.device, int]] = None):
|
|
if _default_memory_monitor is not None:
|
|
return _default_memory_monitor.device_memory_info(device)
|
|
|
|
|
|
def print_host_memory_usage(tag: Optional[str] = None,
|
|
unit: MemoryMonitor.UnitType = 'GiB'):
|
|
if _default_memory_monitor is not None:
|
|
_default_memory_monitor.print_host_memory_usage(tag=tag, unit=unit)
|
|
|
|
|
|
def print_device_memory_usage(tag: Optional[str] = None,
|
|
unit: MemoryMonitor.UnitType = 'GiB'):
|
|
if _default_memory_monitor is not None:
|
|
_default_memory_monitor.print_device_memory_usage(tag=tag, unit=unit)
|
|
|
|
|
|
def print_memory_usage(tag: Optional[str] = None,
|
|
unit: MemoryMonitor.UnitType = 'GiB'):
|
|
if _default_memory_monitor is not None:
|
|
_default_memory_monitor.print_memory_usage(tag=tag, unit=unit)
|
|
|
|
|
|
def print_peak_memory_usage(unit: MemoryMonitor.UnitType = 'GiB'):
|
|
if _default_memory_monitor is not None:
|
|
_default_memory_monitor.print_peak_memory_usage(unit=unit)
|
|
|
|
|
|
@_is_building
|
|
def check_gpt_mem_usage(engine, kv_dtype, use_gpt_attention_plugin,
|
|
paged_kv_cache, max_batch_size, max_beam_width,
|
|
max_input_len, max_output_len, local_num_kv_heads,
|
|
head_size, num_layers):
|
|
# Get the amount of memory
|
|
runtime = trt.Runtime(logger.trt_logger)
|
|
activation_size = 0
|
|
try:
|
|
cuda_engine = runtime.deserialize_cuda_engine(engine)
|
|
assert cuda_engine is not None
|
|
activation_size = cuda_engine.device_memory_size / 1024 / 1024
|
|
del cuda_engine
|
|
except Exception:
|
|
logger.warning(
|
|
f'Exception when deserializing engine: {traceback.format_exc()}')
|
|
logger.warning(f'Activation memory size will be regarded as 0.')
|
|
logger.info(f'Activation memory size: {activation_size:.2f} MiB')
|
|
weights_size = engine.nbytes / 1024 / 1024
|
|
logger.info(f'Weights memory size: {weights_size:.2f} MiB')
|
|
kv_cache_size = max_batch_size * max_beam_width * 2 * local_num_kv_heads * (
|
|
max_input_len +
|
|
max_output_len) * (head_size) * num_layers * kv_dtype.itemsize
|
|
# without plugin, we need two set of kv cache buffers,
|
|
# one for inputs, and the other for outputs.
|
|
if not use_gpt_attention_plugin:
|
|
kv_cache_size *= 2
|
|
kv_cache_size = kv_cache_size / 1024 / 1024
|
|
logger.info(f'Max KV Cache memory size: {kv_cache_size:.2f} MiB')
|
|
est_memory_size = activation_size + weights_size + kv_cache_size
|
|
logger.info(
|
|
f'Estimated max memory usage on runtime: {est_memory_size:.2f} MiB')
|
|
_, _, total_mem = device_memory_info(torch.cuda.current_device())
|
|
if est_memory_size > total_mem:
|
|
logger.warning(
|
|
f'Engine is successfully built, but GPU Memory ({total_mem:.2f} GB)',
|
|
' may not be enough when inferencing on max shape.')
|
|
if paged_kv_cache:
|
|
logger.warning(
|
|
f'Since paged_kv_cache is enabled, the max KV Cache ',
|
|
'memory size is a estimate for very extreme cases, ',
|
|
'it\'s possible that most cases won\'t meet OOM.')
|
|
else:
|
|
logger.warning(
|
|
f'Enabling `--paged_kv_cache` could help reduce the ',
|
|
'GPU memory usage on runtime.')
|
|
|
|
return est_memory_size
|