TensorRT-LLMs/tensorrt_llm/models/mllama/config.py
2024-12-16 21:50:47 -08:00

256 lines
11 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from typing import List, Optional, Union
from ...functional import LayerNormPositionType, LayerNormType, MLPType
from ...mapping import Mapping
from ..convert_utils import infer_dtype
from ..modeling_utils import PretrainedConfig, QuantConfig
class MLLaMAConfig(PretrainedConfig):
def __init__(self,
*,
mlp_bias: bool = False,
attn_bias: bool = False,
rotary_base: float = 10000.0,
rotary_scaling: Optional[dict] = None,
residual_mlp: bool = False,
disable_weight_only_quant_plugin: bool = False,
cross_attention: bool = True,
cross_attention_layers: List[int] = None,
vision_output_dim: int = 0,
has_position_embedding=False,
type_vocab_size=None,
rescale_before_lm_head=False,
layernorm_type=LayerNormType.RmsNorm,
layernorm_position=LayerNormPositionType.pre_layernorm,
has_attention_qkvo_bias=False,
has_mlp_bias=False,
has_model_final_layernorm=True,
model_type='MLLaMAForCausalLM',
skip_cross_kv=False,
mlp_type=MLPType.GatedMLP,
has_embedding_scale=False,
residual_scaling=1.0,
has_lm_head_bias=False,
num_buckets=None,
max_distance=0,
relative_attention=False,
**kwargs):
self.mlp_bias = mlp_bias
self.attn_bias = attn_bias
self.rotary_base = rotary_base
self.rotary_scaling = rotary_scaling
self.residual_mlp = residual_mlp
self.disable_weight_only_quant_plugin = disable_weight_only_quant_plugin
assert cross_attention
self.cross_attention = cross_attention
self.cross_attention_layers = cross_attention_layers
assert vision_output_dim != 0
self.vision_output_dim = vision_output_dim
self.has_position_embedding = has_position_embedding
self.type_vocab_size = type_vocab_size
self.rescale_before_lm_head = rescale_before_lm_head
self.layernorm_type = layernorm_type
self.layernorm_position = layernorm_position
self.has_attention_qkvo_bias = has_attention_qkvo_bias
self.has_mlp_bias = has_mlp_bias
self.has_model_final_layernorm = has_model_final_layernorm
self.model_type = model_type
self.skip_cross_kv = skip_cross_kv
self.mlp_type = mlp_type
self.has_embedding_scale = has_embedding_scale
self.residual_scaling = residual_scaling
self.has_lm_head_bias = has_lm_head_bias
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention = relative_attention
self.skip_cross_attn_blocks = True
kwargs.pop('embed_vocab_size', None)
kwargs.pop('num_kv_heads_per_layer', None)
kwargs.pop('num_kv_heads_per_cross_attn_layer', None)
super().__init__(**kwargs)
@property
def embed_vocab_size(self):
return self.vocab_size + 8 #FIXME The vocab_size of embedding contains the special tokens for image
@property
def num_kv_heads_per_layer(self):
num_kv_heads_per_layer = [
self.num_key_value_heads for _ in range(self.num_hidden_layers)
]
for layer_idx in self.cross_attention_layers:
num_kv_heads_per_layer[layer_idx] = 0
return num_kv_heads_per_layer
@property
def num_kv_heads_per_cross_attn_layer(self):
num_kv_heads_per_cross_attn_layer = [
0 for _ in range(self.num_hidden_layers)
]
for layer_idx in self.cross_attention_layers:
num_kv_heads_per_cross_attn_layer[
layer_idx] = self.num_key_value_heads
return num_kv_heads_per_cross_attn_layer
def to_dict(self):
output = super().to_dict()
# Serialize the fields added in MLLaMAConfig
output['mlp_bias'] = self.mlp_bias
output['attn_bias'] = self.attn_bias
output['rotary_base'] = self.rotary_base
output['rotary_scaling'] = self.rotary_scaling
output['residual_mlp'] = self.residual_mlp
output[
'disable_weight_only_quant_plugin'] = self.disable_weight_only_quant_plugin
output['cross_attention'] = self.cross_attention
output['cross_attention_layers'] = self.cross_attention_layers
output['vision_output_dim'] = self.vision_output_dim
output['embed_vocab_size'] = self.embed_vocab_size
output['num_kv_heads_per_layer'] = self.num_kv_heads_per_layer
output[
'num_kv_heads_per_cross_attn_layer'] = self.num_kv_heads_per_cross_attn_layer
output['skip_cross_attn_blocks'] = self.skip_cross_attn_blocks
return output
@classmethod
def from_hugging_face(
cls,
hf_config_or_dir: Union[str, 'transformers.PretrainedConfig'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
import transformers
if isinstance(hf_config_or_dir, transformers.PretrainedConfig):
hf_config = hf_config_or_dir
else:
hf_config_dir = str(hf_config_or_dir)
hf_config = transformers.AutoConfig.from_pretrained(
hf_config_dir, trust_remote_code=True)
hf_text_config = hf_config.text_config
hf_vision_config = hf_config.vision_config
num_key_value_heads = getattr(hf_text_config, "num_key_value_heads",
hf_text_config.num_attention_heads)
hidden_act = hf_text_config.hidden_act if hasattr(
hf_text_config, "hidden_act") else hf_text_config.hidden_activation
norm_epsilon = hf_text_config.rms_norm_eps
head_dim = getattr(
hf_text_config, "head_dim",
hf_text_config.hidden_size // hf_text_config.num_attention_heads)
head_size = getattr(hf_text_config, "kv_channels", head_dim)
attn_bias = getattr(hf_text_config, 'bias', False) or getattr(
hf_text_config, 'attention_bias', False)
rotary_scaling = getattr(hf_text_config, "rope_scaling", None)
rotary_base = getattr(hf_text_config, "rope_theta", 10000.0)
residual_mlp = getattr(hf_text_config, "parallel_attn_mlp_res", False)
disable_weight_only_quant_plugin = kwargs.pop(
'disable_weight_only_quant_plugin', False)
dtype = infer_dtype(dtype, getattr(hf_config, 'torch_dtype', None))
return cls(
architecture=hf_config.architectures[0],
dtype=dtype,
num_hidden_layers=hf_text_config.num_hidden_layers,
num_attention_heads=hf_text_config.num_attention_heads,
hidden_size=hf_text_config.hidden_size,
intermediate_size=hf_text_config.intermediate_size,
num_key_value_heads=num_key_value_heads,
head_size=head_size,
vocab_size=hf_text_config.vocab_size,
position_embedding_type='rope_gpt_neox',
max_position_embeddings=hf_text_config.max_position_embeddings,
hidden_act=hidden_act,
norm_epsilon=norm_epsilon,
attn_bias=attn_bias,
rotary_base=rotary_base,
rotary_scaling=rotary_scaling,
residual_mlp=residual_mlp,
disable_weight_only_quant_plugin=disable_weight_only_quant_plugin,
mapping=mapping,
quantization=quant_config,
cross_attention_layers=hf_text_config.cross_attention_layers,
vision_output_dim=hf_vision_config.vision_output_dim,
**kwargs)
@classmethod
def from_meta_ckpt(cls,
meta_ckpt_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
with open(Path(meta_ckpt_dir, "params.json")) as fp:
meta_config: dict = json.load(fp)
n_embd = meta_config["dim"]
n_head = meta_config["n_heads"]
n_kv_head = meta_config.get("n_kv_heads", n_head)
vocab_size = meta_config.get("vocab_size", 32000)
# Reset vocab_size to 32000 for LLama v2 checkpoint.
if vocab_size == -1:
vocab_size = 32000
if "hidden_dim" in meta_config:
inter_size = meta_config["hidden_dim"]
else:
multiple_of = meta_config.get("multiple_of", 1)
n_embd_ = int(4 * n_embd * 2 / 3)
ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
inter_size = multiple_of * (
(int(n_embd_ * ffn_dim_multiplier) + multiple_of - 1) //
multiple_of)
dtype = infer_dtype(dtype, 'bfloat16')
if meta_config.get('use_scaled_rope'):
rotary_scaling = {"type": "llama3"}
else:
rotary_scaling = meta_config.get("rope_scaling")
# meta checkpoint don't have vocab_size|hidden_act|rotary_base specified, use same default value as HF
return cls(architecture="MLLaMAForCausalLM",
dtype=dtype,
num_hidden_layers=meta_config["n_layers"],
num_attention_heads=n_head,
hidden_size=n_embd,
intermediate_size=inter_size,
num_key_value_heads=n_kv_head,
vocab_size=vocab_size,
position_embedding_type='rope_gpt_neox',
max_position_embeddings=2048,
hidden_act='silu',
rotary_scaling=rotary_scaling,
rotary_base=meta_config.get('rope_theta', 10000),
norm_epsilon=meta_config["norm_eps"],
mapping=mapping,
quantization=quant_config,
**kwargs)